Overview of Affinity Tags for Protein Purification

Michelle E. Kimple1, Allison L. Brill1, Renee L. Pasker1

1 University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 9.9
DOI:  10.1002/0471140864.ps0909s73
Online Posting Date:  September, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein‐protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. Curr. Protoc. Protein Sci. 73:9.9.1‐9.9.23. © 2013 by John Wiley & Sons, Inc.

Keywords: protein purification; protein detection; affinity chromatography; affinity tag; epitope tag

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Early Affinity Tags
  • Commonly Used Affinity Tags
  • DEVELOPING AFFINITY TAG TECHNOLOGIES
  • Affinity Tags and Protein Purification
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abdulaev, N.G., Zhang, C., Dinh, A., Ngo, T., Bryan, P.N., Brabazon, D.M., Marino, J.P., and Ridge, K.D. 2005. Bacterial expression and one‐step purification of an isotope‐labeled heterotrimeric G‐protein α‐subunit. J. Biomol. NMR 32:31–40.
  Berlot, C.H. 1999. Expression and functional analysis of G‐protein α subunits in mammalian cells. In G‐proteins: Techniques of Analysis (D.R. Manning, ed.) pp. 37–57. CRC Press, New York.
  Bornhorst, J.A. and Falke, J.J. 2000. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 326:245–254.
  Chong, S., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H., and Xu, M.Q. 1997. Single‐column purification of free recombinant proteins using a self‐cleavable affinity tag derived from a protein splicing element. Gene 192:271–281.
  Crespo, P., Schuebel, K.E., Ostrom, A.A., Gutkind, J.S., and Bustelo, X.R. 1997. Phosphotyrosine‐dependent activation of Rac‐1 GDP/GTP exchange by the vav proto‐oncogene product. Nature 385:169–172.
  Cronan, J.E. Jr. 1990. Biotination of proteins in vivo. A post‐translational modification to label, purify, and study proteins. J. Biol. Chem. 265:10327–10333.
  di Guan, C., Li, P., Riggs, P.D., and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose‐binding protein. Gene 67:21–30.
  Fritze, C.E. and Anderson, T.R. 2000. Epitope tagging: General method for tracking recombinant proteins. Methods Enzymol. 327:3–16.
  Gerdes, H.H. and Kaether, C. 1996. Green fluorescent protein: Applications in cell biology. FEBS Lett. 389:44–47.
  Goldstein, D.J., Toyama, R., Dhar, R., and Schlegel, R. 1992. The BPV‐1 E5 oncoprotein expressed in Schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16‐kDa component of the vacuolar proton‐ATPase. Virology 190:889–893.
  Hollingshead, M., Sandersen, J., and Vaux, D.J. 1997. Anti‐biotin antibodies offer superior organelle‐specific labeling of mitochondria over avidin or streptavadin. J. Histochem. Cytochem. 45:1053–1058.
  Imagawa, M., Yoshitake, S., Hamaguchi, Y., Ishikawa, E., Nitsu, Y., Urushizaki, I., Kanazawa, R., Tachibana, S., Nakazawa, N., and Ogawa, H. 1982. Characteristics and evaluation of antibody‐horseradish peroxidase conjugates prepared by using a maleimide compound, glutaraldehyde, and periodate. J. Appl. Biochem. 4:41–57.
  Jones, C., Patel, A., Griffin, S., Martin, J., Young, P., O'Donnell, K., Silverman, C., Porter, T., and Chaiken, I. 1995. Current trends in molecular recognition and bioseparation. J. Chromatogr. 707:3–22.
  Kaldalu, N., Lepik, D., Kristjuhan, A., and Ustav, M. 2000. Monitoring and purification of proteins using bovine papillomavirus E2 epitope tags. Biotechniques 28:456–462.
  Karp, M. and Oker‐Blom, C. 1999. A streptavidin‐luciferase fusion protein: Comparisons and applications. Biomol. Eng. 16:101–104.
  Kimple, M.E. and Sondek, J. 2002. Affinity tag for protein purification and detection based on the disulfide‐linked complex of InaD and NorpA. Biotechniques 33:578–588.
  Kimple, M.E., Siderovski, D.P., and Sondek J. 2001. Functional relevance of the disulfide‐linked complex of the N‐terminal PDZ domain of InaD with NorpA. EMBO J. 20:4414–4422.
  Kolodziej, P.A. and Young, R.A. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194:508–519.
  Kuliopulos, A. and Walsh, C.T. 1994. Production, purification, and cleavage of tandem repeats of recombinant peptides. J. Am. Chem. Soc. 116:4599–4607.
  Kwatra, M.M., Schreurs, J., Schwinn, D.A., Innis, M.A., Caron, M.G., and Lefkowitz, R.J. 1995. Immunoaffinity purification of epitope‐tagged human β 2‐adrenergic receptor to homogeneity. Protein Expr. Purif. 6:717–721.
  Lazzaroni, J.C., Atlan, D., and Portalier, R.C. 1985. Excretion of alkaline phosphatase by Escherichia coli K‐12 pho constitutive mutants transformed with plasmids carrying the alkaline phosphatase structural gene. J. Bacteriol. 164:1376–1380.
  Li, Y. 2011. The tandem affinity purification technology: An overview. Biotechnol. Lett. 33:1487–1499.
  Lilius, G., Persson, M., Bulow, L., and Mosbach, K. 1991. Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. Eur. J. Biochem. 198:499–504.
  Ljungquist, C., Breitholtz, A., Brink‐Nilsson, H., Moks, T., Uhlen, M., and Nilsson, B. 1989. Immobilization and affinity purification of recombinant proteins using histidine peptide fusions. Eur. J. Biochem. 186:563–569.
  Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D.H., Bulleit, R.F., and Wood, K.V. 2008. HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–382.
  Lunn, C.A., Kathju, S., Wallace, B.J., Kushner, S.R., and Pigiet, V. 1984. Amplification and purification of plasmid‐encoded thioredoxin from Escherichia coli K12. J. Biol. Chem. 259:10469–10474.
  Maina, C.V., Riggs, P.D., Grandea, A.G. III, Slatko, B.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A., and Guan, C.D. 1988. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose‐binding protein. Gene 74:365–373.
  Makrides, S.C. 1996. Strategies for achieving high‐level expression of genes in Escherichia coli. Microbiol. Rev. 60:512–538.
  McLean, P.J., Kawamata, H., and Hyman, B.T. 2001. α‐synuclein‐enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901–912.
  Morandi, C., Perego, M., and Mazza, P.G. 1984. Expression of human dihydrofolate reductase cDNA and its induction by chloramphenicol in Bacillus subtilis. Gene 30:69–77.
  Nelson, R.W., Jarvik, J.W., Taillon, B.E., and Tubbs, K.A. 1999. BIA/MS of epitope‐tagged peptides directly from E. coli lysate: Multiplex detection and protein identification at low‐femtomole to subfemtomole levels. Anal. Chem. 71:2858–2865.
  Nilsson, J., Bosnes, M., Larsen, F., Nygren, P.A., Uhlen, M., and Lundeberg J. 1997a. Heat‐mediated activation of affinity‐immobilized Taq DNA polymerase. Biotechniques 22:744–751.
  Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M., and Nygren, P.A. 1997b. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11:1–16.
  Podbielski, A., Peterson, J.A., and Cleary, P. 1992. Surface protein‐CAT reporter fusions demonstrate differential gene expression in the vir regulon of Streptococcus pyogenes. Mol. Microbiol. 6:2253–2265.
  Ruan, B., Fisher, K.E., Alexander, P.A., Doroshko, V., and Bryan, P.N. 2004. Engineering subtilisin into a fluoride‐triggered processing protease useful for one‐step protein purification. Biochemistry 43:14539–14546.
  Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W.J., McCormick, F., and Polakis, P. 1991. Molecular cloning of a GTPase activating protein specific for the Krev‐1 protein p21rap1. Cell 65:1033–1042.
  Sambrook, J. and Fritsch, E.F. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  Sano, T., Vajda, S., and Cantor, C.R. 1998. Genetic engineering of streptavidin, a versatile affinity tag. J. Chromatogr. B Biomed. Appl. 715:85–91.
  Schmidt, T.G. and Skerra, A. 1993. The random peptide library‐assisted engineering of a C‐terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 6:109–122.
  Skerra, A. and Schmidt, T.G. 2000. Use of the Strep‐tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol. 326:271–304.
  Smith, D.B. 2000. Generating fusions to glutathione S–transferase for protein studies. Methods Enzymol. 326:254–270.
  Smith, D.B. and Johnson, K.S. 1988. Single‐step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S–transferase. Gene 67:31–40.
  Smith, M.C., Furman, T.C., Ingolia, T.D., and Pidgeon, C. 1988. Chelating peptide‐immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J. Biol. Chem. 263:7211–7215.
  Stevens, R.C. 2000. Design of high‐throughput methods of protein production for structural biology. Structure Fold. Des. 8:R177–R185.
  Strambio‐de‐Castillia, C., Tetenbaum‐Novatt, J., Imai, B.S., Chait, B.T., and Rout, M.P. 2005. A method for the rapid and efficient elution of native affinity‐purified protein A tagged complexes. J. Proteome Res. 4:2250–6.
  Tai, T.N., Havelka, W.A., and Kaplan, S. 1988. A broad‐host‐range vector system for cloning and translational lacZ fusion analysis. Plasmid 19:175–188.
  Terpe, K. 2003. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60:523–533.
  Thain, A., Gaston, K., Jenkins, O., and Clarkie, A.R. 1996. A method for the separation of GST fusion proteins from co‐purifying GroEL. Trends Genet. 12:209–210.
  Thomas, G.M. and Skerra, A. 2007. The Strep‐tag system for one‐step purification and high‐affinity detection or capturing of proteins. Nature Protocols 2:1528–1535.
  Wang, L.F., Yu, M., White, J.R., and Eaton, B.T. 1996. BTag: A novel six‐residue epitope tag for surveillance and purification of recombinant proteins. Gene 169:53–58.
  Waugh, D.S. 2005. Making the most of affinity tags. Trends Biotechnol. 23:316–320.
  Zheng, C.F., Simcox, T., Xu, L., and Vaillancourt, P. 1997. A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin‐binding peptide fusion proteins. Gene 186:55–60.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library