Separation of Peptides on HALO 2‐Micron Particles

Colin T. Mant1, Robert S. Hodges1

1 Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 11.6
DOI:  10.1002/cpps.12
Online Posting Date:  August, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Reversed‐phase high‐performance liquid chromatography (RP‐HPLC) is of fundamental importance to the isolation and separation of peptides, proteins, and other biomolecules. Hence, there is a continuing high demand for the development of RP‐HPLC stationary‐phase materials with enhanced separation efficiency. HALO packing materials began the revolution in “core‐shell” technology with the advantages of faster separations, higher resolution and peak capacity, high temperature stability, and rugged reliable performance compared to traditional HPLC and UHPLC. These materials are characterized by a solid core surrounded by a thin layer of porous material, and represent a technology for the future with continuing refinements. Such refinements are aided via the use of designed synthetic peptide standards during stationary‐phase development. Concomitantly, such standards also enable the researcher to monitor RP‐HPLC column performance and develop optimized separation protocols for peptides from a wide array of sources. © 2016 by John Wiley & Sons, Inc.

Keywords: reversed‐phase HPLC; separation of peptides; solid core; core‐shell; fused‐core particles; 2.0 micron particles; trifluoroacetic acid (TFA); anionic ion‐pairing reagent

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Peptide standards (see recipe and Fig.  )
  • Mobile‐phase solvent A: 0.1% (v/v) trifluoroacetate (TFA; HPLC/SpectroGrade‐processed in glass distillation units, Thermo Scientific) in water from a Barnstead E‐pure purification system (in this study, 0.2% and 0.4% TFA were also used)
  • Mobile‐phase solvent B: 0.08% to 0.09% (v/v) TFA (Thermo Scientific) in acetonitrile (HPLC grade, submicron filtered; Fisher) to obtain a flat or slowly rising baseline; in this study 0.17 to 0.18% and 0.37 to 0.38% TFA were used to obtain a flat or slowly rising baseline when 0.2% or 0.4% TFA were used in mobile phase solvent A, respectively.
  • Anionic ion‐pairing reagent, TFA (Thermo Scientific)
  • Water: In‐house distilled water purified through a Barnstead E‐pure purification system to reach a MΩ‐cm reading greater than 17.6
  • Reversed‐phase column: HALO Peptide ES‐C18 2.0 µm particle size, 160 Å pore size. 2.1 mm × 100 mm (Advanced Materials Technology); column is best for routine use below 60°C, but can be used at temperatures up to 90°C; stable to operating pressures up to 600 bar (9000 psi)
  • HPLC system: Agilent 1200 liquid chromatograph with maximum pressure limit of 400 bar:
  • Detector: Agilent 1200 series diode array and multiple wavelength detector with a 13‐µl flow cell with a 10‐mm pathlength
  • Autosampler: Agilent 1200 series, injection volume 1 to 100 µl (injections of 15 µl of the peptide mixture dissolved in water were used in this study)
  • Temperature control: Agilent 1200 series thermostatted column compartment; all runs were carried out at 50°C in this study due both to unfavorably high operating pressures at lower temperatures as well as improved resolution at high temperatures
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Antia, F.D. and Horváth, C. 1998. High‐performance liquid chromatography at elevated temperatures; examination of conditions for the rapid separation of large molecules. J. Chromatogr. 435:1‐15. doi: 10.1016/S0021‐9673(01)82158‐0.
  Bell, D.S., Brandex, H.K., and Wellworth, D. 2015. Recent trends and advances in superficially porous particle technology: Application to large molecule separations. Chromatogr. Today 8:4‐8.
  Bidlingmeyer, B., Chan, C.C., Fastino, P., Henry, R., Koerner, P., Maule, A.T., Marques, M.R.C., Neue, J., Ng, L., Pappa, H., Sander, L., Santasania, C., Snyder, L., and Wozniak, T. 2005. HPLC column classification. Pharmacop. Forum 31:637‐645.
  Brettschneider, F., Jankowski, V., Günthner, T., Salem, S., Nierhause, M., Schulz, A., Zidek, W., and Jankowski, J. 2010. Replacement of acetonitrile by ethanol as solvent in reversed phase chromatography of biomolecules. J. Chromatogr. B 878:763‐768. doi: 10.1016/j.jchromb.2010.01.029.
  Burke, T.W.L., Mant, C.T., and Hodges, R.S. 1991. The effect of varying flow rate, gradient rate and detection wavelength on peptide elution profiles in reversed‐phase chromatography. In High Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis and Conformation (C.T. Mant and R.S. Hodges, eds.) pp. 307‐317. CRC Press, Boca Raton, Fla.
  Burke, T.W., Mant, C.T., Black, J.A., and Hodges, R.S. 1989. Strong cation‐exchange HPLC of peptides: Effect of non‐specific hydrophobic interactions and linearization of peptide retention behavior. J. Chromatogr. 476:377‐389. doi: 10.1016/S0021‐9673(01)93883‐X.
  Chen, Y., Mehok, A.R., Mant, C.T., and Hodges, R.S. 2004. Optimum concentration of trifluoroacetic acid for reversed‐phase liquid chromatography of peptides revisited. J. Chromatogr. A 1043:9‐18. doi: 10.1016/j.chroma.2004.03.070.
  Cunliffe, J.M. and Maloney, T.D. 2007. Fused‐core particle technology as an alternative to sub‐2‐microm particles to achieve high separation efficiency with low backpressure. J. Sep. Sci. 30:3104‐3109. doi: 10.1002/jssc.200700260.
  DeStefano, J.J., Langlois, T.J., and Kirkland, J.J. 2008. Characteristics of superficially‐porous silica particles for fast HPLC: Some performance comparisons with sub‐2‐micron particles. J. Chromatogr. Sci. 46:254‐260 doi: 10.1093/chromsci/46.3.254.
  DeStefano, J.J., Schuster, S.A., Lawhorn, J.M., and Kirkland, J.J. 2012. Performance characteristics of new superficially porous particles. J. Chromatogr. A 1256:76‐83. doi: 10.1016/j.chroma.2012.08.036.
  Fekete, S., Fekete, J., and Ganzler, K. 2009. Shell and small particles; evaluation of new column technology. J. Pharm. Biomed. Anal. 49:64‐71. doi: 10.1016/j.jpba.2008.10.009.
  Fekete, S., Oláh, E., and Fekete, J. 2012a. Fast liquid chromatography: The domination of core‐shell and very fine particles. J. Chromatogr. A 1228:57‐71. doi: 10.1016/j.chroma.2011.09.050.
  Fekete, S., Veuthy, J.L., and Guillarme, D. 2012b. New trends in reversed‐phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. J. Pharm. Biomed. Anal. 69:9‐27. doi: 10.1016/j.jpba.2012.03.024.
  Fekete, S., Berky, R., Fekete, J., Veuthey, J.L., and Guillame, D. 2012c. Evaluation of a new wide pore core‐shell material (Aeris WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins. J. Chromatogr. A 1236:177‐188. doi: 10.1016/j.chroma.2012.03.018.
  Gilar, M., Jaworski, A., and McDonald, T.S. 2014. Solvent selectivity and strength in reversed‐phase liquid chromatography separation of peptides. J. Chromatogr. A 1337:140‐146. doi: 10.1016/j.chroma.2014.02.048.
  González‐Ruiz, V., Olives, A.I., and Martin, M.A. 2015. Core‐shell particles lead the way to renewing high‐performance liquid chromatography. Trends Anal. Chem. 64:17‐28. doi: 10.1016/j.trac.2014.08.008.
  Guo, D., Mant, C.T., Taneja, A.K., Parker, J.M.R., and Hodges, R.S. 1986. Prediction of peptide retention times in reversed‐phase high‐performance liquid chromatography. I. Determination of retention coefficients of amino acid residues using model synthetic peptides. J. Chromatogr. 359:499‐518. doi: 10.1016/0021‐9673(86)80102‐9.
  Guo, D., Mant, C.T., and Hodges, R.S. 1987. Effects of ion‐pairing reagents on the prediction of peptide retention in reversed‐phase high‐performance liquid chromatography. J. Chromatogr. 386:205‐222. doi: 10.1016/S0021‐9673(01)94598‐4.
  Hermodson, M. and Mahoney, W.C. 1983. Separation of peptides by reversed‐phase high‐performance liquid chromatography. Methods Enzymol. 91:352‐359. doi: 10.1016/S0076‐6879(83)91032‐7.
  Kirkland, J.J., Truszkowski, F.A., Dilks, C.H. Jr., and Engel, G.S., 2000. Superficially porous silica microspheres for fast high‐performance liquid chromatography of macromolecules. J. Chromatogr. A 809:3‐13. doi: 10.1016/S0021‐9673(00)00392‐7.
  Kirkland, J.J., Langlois, T.J., and DeStefano, J.J. 2007. Fused core particles for HPLC columns. Am. Lab. 39:18‐21.
  Kovacs, J.M., Mant, C.T., and Hodges, R.S. 2006a. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest‐neighbor or conformational effects. Biopolymers (Peptide Science) 84:283‐297. doi: 10.1002/bip.20417.
  Kovacs, J.M., Mant, C.T., and Hodges, R.S. 2006b. Determination of intrinsic hydrophilicity/hydrophobicity coefficients of amino acid side‐chains using synthetic model peptides. In Understanding Biology Using Peptides: Proceedings of the 19th American Peptide Symposium. San Diego, Ca. (2005) (S.E. Blondelle, ed.) pp. 679‐682. Springer Science, New York.
  Kovacs, J.M., Mant, C.T., Kwok, S.C., Osguthorpe, D.J., and Hodges, R.S. 2006c. Quantitation of the nearest‐neighbour effects of amino acid side‐chains that restrict conformational freedom of the polypeptide chain using reversed‐phase liquid chromatography of synthetic model peptides with L‐ and D‐amino acid substitutions. J. Chromatogr. A 1123:212‐224. doi: 10.1016/j.chroma.2006.04.092.
  Li, J.W. and Carr, P.W. 1997. Evaluation of temperature effects on selectivity in RPLC separations using polybutadiene‐coated zirconia. Anal. Chem. 69:2202‐2206. doi: 10.1021/ac9608681.
  Li, Z., Rutan, S‐C., and Dong, S. 1996. Wetting of octadecylsilylated silica in methanol‐water eluents. Anal. Chem. 68:124‐129. doi: 10.1021/ac950666p.
  Mahoney, W.C. 1982. Isolation of denatured proteins and peptides by high‐performance liquid chromatography. Effect of different perfluorinated acids, column length and large‐pore supports. Biochim. Biophys. Acta 704:284‐289. doi: 10.1016/0167‐4838(82)90158‐3.
  Mant, C.T. and Hodges, R.S. 1986. Requirement for peptide standards in reversed‐phase high performance liquid chromatography. LC Mag., Liq. Chromatogr. HPLC 4:250‐254.
  Mant, C.T. and Hodges, R.S. 1987. Monitoring free silanols on reversed‐phase supports with peptide standards. Chromatographia 24:805‐814. doi: 10.1007/BF02688589.
  Mant, C.T. and Hodges, R.S. 2002. In HPLC of Biological Macromolecules, 2nd ed. (K.M. Gooding and F.E. Regnier, eds.) pp. 433‐511. Marcel Dekker, New York.
  Mant, C.T. and Hodges, R.S. 2008a. Mixed‐mode hydrophilic interaction/cation‐exchange chromatography: Separation of complex mixtures of peptides of varying charge and hydrophobicity. J. Sep. Sci. 31:1573‐1584. doi: 10.1002/jssc.200700619.
  Mant, C.T. and Hodges, R.S. 2008b. Mixed‐mode hydrophilic interaction/cation‐exchange chromatography (HILIC/CEX) of peptides and proteins. J. Sep. Sci. 31:2754‐2773. doi: 10.1002/jssc.200800243.
  Mant, C.T. and Hodges, R.S. 2012. Design of peptide standards with the same composition and minimal sequence variation to monitor performance/selectivity of reversed‐phase matrices. J. Chromatogr. A 1230:30‐40. doi: 10.1016/j.chroma.2012.01.053.
  Mant, C.T., Parker, J.M.R., and Hodges, R.S. 1987a. Size‐exclusion HPLC of peptides: Requirement for peptide standards to monitor non‐ideal behavior. J. Chromatogr. 397:99‐112. doi: 10.1016/S0021‐9673(01)84993‐1.
  Mant, C.T., Burke, T.W.L., and Hodges, R.S., 1987b. Optimization of peptide separations in reversed‐phase HPLC: Isocratic versus gradient elution. Chromatographia 24:565‐572. doi: 10.1007/BF02688546.
  Mant, C.T., Chao, H., and Hodges, R.S., 1997. Effect of mobile phase on the oligomerization state of α‐helical coiled‐coil peptides during high‐performance size‐exclusion chromatography. J. Chromatogr. A 791:85‐98. doi: 10.1016/S0021‐9673(97)00767‐X.
  Mant, C.T., Chen, Y., Yan, Z., Popa, T.V., Kovacs, J.M., Mills, J.B., Tripet, B., and Hodges, R.S. 2007. HPLC analysis and purification of peptides. In Peptide Characterization and Application, vol. 386 of Methods in Molecular Biology (G.B. Fields, ed.) pp. 3‐55. Humana Press, Totowa, N.J.
  Mant, C.T., Kovacs, J.M., Kim, H.M., Pollock, D.D., and Hodges, R.S. 2009. Intrinsic amino acid side‐chain hydrophilicity/hydrophobicity coefficients determined by reversed‐phase high‐performance liquid chromatography of model peptides: Comparison with other hydrophilicity/hydrophobicity scales. Biopolymers (Peptide Science) 92:573‐595. doi: 10.1002/bip.21316.
  Mant, C.T., Cepeniene, D., and Hodges, R.S. 2010. Reversed‐phase HPLC of peptides: Assessing column and solvent selectivity on standard, polar‐embedded and polar endcapped columns. J. Sep. Sci. 33:3005‐3021. doi: 10.1002/jssc.201000518.
  Mant, C.T., Jiang, Z., Boyes, B.E., and Hodges, R.S. 2013. An improved approach to hydrophilic interaction chromatography of peptides: Salt gradients in the presence of high isocratic acetonitrile concentrations. J. Chromatogr. A 1277:15‐25. doi: 10.1016/j.chroma.2012.12.044.
  Monera, O.D., Sereda, T.J., Zhou, N.E., Kay, C.M., and Hodges, R.S. 1995. Relationship of side‐chain hydrophobicity and α‐helical propensity on the stability of the single‐stranded amphipathic α‐helix. J. Peptide Sci. 1:319‐329. doi: 10.1002/psc.310010507.
  Popa, T.V., Mant, C.T., and Hodges, R.S. 2006. Ion‐interaction‐capillary zone electrophoresis of cationic proteomic peptide standards. J. Chromatogr. A 1111:192‐199. doi: 10.1016/j.chroma.2005.07.015.
  Schuster, S.A., Boyes, B.E., Wagner, B.M., and Kirkland, J.J. 2012. Fast high performance liquid chromatography separations for proteomic applications using Fused‐Core silica particles. J. Chromatogr A 1228:232‐241. doi: 10.1016/j.chroma.2011.07.082.
  Schuster, S.A., Wagner, B.M., Boyes, B.E., and Kirkland, J.J. 2013. Optimized superficially porous particles for protein separations. J. Chromatogr. A 1315:118‐126. doi: 10.1016/j.chroma.2013.09.054.
  Shibue, M., Mant, C.T., and Hodges, R.S. 2005a. Effect of anionic ion‐pairing reagent hydrophobicity on selectivity of peptide separations by reversed‐phase liquid chromatography. J. Chromatogr. A 1080:68‐75. doi: 10.1016/j.chroma.2005.03.035.
  Shibue, M., Mant, C.T., and Hodges, R.S. 2005b. Effect of anionic ion‐pairing reagent concentration (1‐60 mM) on reversed‐phase liquid chromatography elution behaviour of peptides. J. Chromatogr. A 1080:58‐67. doi: 10.1016/j.chroma.2005.02.047.
  Snyder, L.R., Dolan, J.W., and Carr, P.W. 2004. The hydrophobic‐subtraction model of reversed‐phase column selectivity. J. Chromatogr. A 1060:77‐116. doi: 10.1016/S0021‐9673 (04)01480‐3.
  Song, W., Pabbisetty, D., Groeber, E.A., Steenwyk, R.C., and Fast, D.W. 2009. Comparison of fused‐core and conventional particle size columns by LC‐MS/MS and UV: Application to pharmacokinetic study. J. Pharm. Biomed. Anal. 50:491‐500. doi: 10.1016/j.jpba.2009.05.011.
  Wagner, B.M., Schuster, S.A., Boyes, B.E., and Kirkland, J.J. 2012. Superficially porous silica particles with wide pores for biomacromolecular separations. J. Chromatogr. A 1264:22‐30. doi: 10.1016/j.chroma.2012.09.052.
  Walter, T.H., Iraneta, P., and Capparella, M. 2005. Mechanism of retention loss when C8 and C18 HPLC columns are used with highly aqueous mobile phases. J. Chromatogr. A 1075:177‐183. doi: 10.1016/j.chroma.2005.04.039.
  Wang, X., Barber, W.E., and Long, W.J. 2012. Applications of superficially porous particles: High speed, high efficiency or both? J. Chromatogr. A 1228:72‐88. doi: 10.1016/j.chroma.2011.07.083.
  Zhou, N.E., Mant, C.T., and Hodges, R.S. 1990. Effect of preferred binding domains on peptide retention behavior in reversed‐phase chromatography: Amphipathic α‐helices. Pept. Res. 3:8‐20. Reprinted in Biochromatography 5:127‐139.
  Zhou, N.E., Monera, O.D., Kay, C.M., and Hodges, R.S. 1994. α‐Helical propensities of amino acids in the hydrophobic face of an amphipathic α‐helix. Protein Pept. Lett. 1:114‐119
Key References
  Mant, C.T. and Hodges, R.S. (eds.) 1991. HPLC of Peptides and Proteins: Separation, Analysis and Conformation. CRC Press, Boca Raton, Fla.
  A comprehensive guide to HPLC of peptides and proteins.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library