High‐Throughput Lectin Microarray‐Based Analysis of Live Cell Surface Glycosylation

Yu Li1, Sheng‐ce Tao2, Heng Zhu3, Jonathan P. Schneck1

1 Department of Pathology, Oncology & Medicine and Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, 2 Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China, 3 The High‐Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 12.9
DOI:  10.1002/0471140864.ps1209s63
Online Posting Date:  February, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Lectins, plant‐derived glycan‐binding proteins, have long been used to detect glycans on cell surfaces. However, the techniques used to characterize serum or cells have largely been limited to mass spectrometry, blots, flow cytometry, and immunohistochemistry. While these lectin‐based approaches are well established and they can discriminate a limited number of sugar isomers by concurrently using a limited number of lectins, they are not amenable for adaptation to a high‐throughput platform. Fortunately, given the commercial availability of lectins with a variety of glycan specificities, lectins can be printed on a glass substrate in a microarray format to profile accessible cell‐surface glycans. This method is an inviting alternative for analysis of a broad range of glycans in a high‐throughput fashion and has been demonstrated to be a feasible method of identifying binding‐accessible cell surface glycosylation on living cells. The current unit presents a lectin‐based microarray approach for analyzing cell surface glycosylation in a high‐throughput fashion. Curr. Protoc. Protein Sci. 63:12.9.1‐12.9.7. © 2011 by John Wiley & Sons, Inc.

Keywords: microarrays; lectins; glycosylation; cancer stem cells; immunology; infectious diseases

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Lyophilized lectins (available from EY Laboratories and Vector Laboratories)
  • Storage buffer (PBS plus 0.02% Tween and 25% glycerol)
  • 2× printing buffer (see recipe)
  • Slide washing solution (see recipe)
  • Slide blocking buffer (see recipe)
  • ≥1×106 cells of interest
  • Phosphate‐buffered saline (PBS; Invitrogen)
  • CFSE cell tracking dye (Invitrogen)
  • Cell binding buffer (see recipe)
  • 384‐well plates (e.g., Nunc Millipore)
  • Schott NexterionR H slides (Schott North America)
  • Microarray printer (e.g., Bio‐Rad ChipWriter Pro)
  • Laboratory marker
  • Nalgene wash bottles or 25‐ml pipets
  • 37°C water bath
  • Adhesive chambered gasket (e.g., Grace Biolabs FlexWell gaskets)
  • Paper towels
  • Microarray slide scanner (e.g., GenePix 4000B)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Batisse, C., Marquet, J., Greffard, A., Fleury‐Feith, J., Jaurand, M.C., and Pilatte, Y. 2004. Lectin‐based three‐color flow cytometric approach for studying cell surface glycosylation changes that occur during apoptosis. Cytometry A 62:81‐88.
   Carter, T.M. and Brooks, S.A. 2006. Detection of aberrant glycosylation in breast cancer using lectin histochemistry. Methods Mol. Med. 120:201‐216.
   Chen, C.S., Korobkova, E., Chen, H., Zhu, J., Jian, X., Tao, S.C., He, C., and Zhu, H. 2008. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat. Methods 5:69‐74.
   Ebe, Y., Kuno, A., Uchiyama, N., Koseki‐Kuno, S., Yamada, M., Sato, T., Narimatsu, H., and Hirabayashi, J. 2006. Application of lectin microarray to crude samples: Differential glycan profiling of lec mutants. J. Biochem. 139:323‐327.
   Hirabayashi, J. 2004. Lectin‐based structural glycomics: Glycoproteomics and glycan profiling. Glycoconj. J. 21:35‐40.
   Hsu, K.L., Pilobello, K.T., and Mahal, L.K. 2006. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol. 2:153‐157.
   Hu, S., Xie, Z., Onishi, A., Yu, X., Jiang, L., Lin, J., Rho, H.S., Woodard, C., Wang, H., Jeong, J.S., Long, S., He, X., Wade, H., Blackshaw, S., Qian, J., and Zhu, H. 2009. Profiling the human protein‐DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610‐622.
   Kuno, A., Uchiyama, N., Koseki‐Kuno, S., Ebe, Y., Takashima, S., Yamada, M., and Hirabayashi, J. 2005. Evanescent‐field fluorescence‐assisted lectin microarray: A new strategy for glycan profiling. Nat. Methods 2:851‐856.
   Lau, K.S. and Dennis, J.W. 2008. N‐Glycans in cancer progression. Glycobiology 18:750‐760.
   Lee, M.R., Park, S., and Shin, I. 2006. Protein microarrays to study carbohydrate‐recognition events. Bioorg. Med. Chem. Lett. 16:5132‐5135.
   Mayoral, M.A., Mayoral, C., Meneses, A., Villalvazo, L., Guzman, A., Espinosa, B., Ochoa, J.L., Zenteno, E., and Guevara, J. 2008. Identification of galectin‐3 and mucin‐type O‐glycans in breast cancer and its metastasis to brain. Cancer Invest. 26:615‐623.
   Pilobello, K.T., Slawek, D.E., and Mahal, L.K. 2007. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. U.S.A. 104:11534‐11539.
   Tao, S.C., Li, Y., Zhou, J., Qian, J., Schnaar, R.L., Zhang, Y., Goldstein, I.J., Zhu, H., and Schneck, J.P. 2008. Lectin microarrays identify cell‐specific and functionally significant cell surface glycan markers. Glycobiology 18:761‐769.
   Tateno, H., Uchiyama, N., Kuno, A., Togayachi, A., Sato, T., Narimatsu, H., and Hirabayashi, J. 2007. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17:1138‐1146.
   Venable, A., Mitalipova, M., Lyons, I., Jones, K., Shin, S., Pierce, M., and Stice, S. 2005. Lectin binding profiles of SSEA‐4 enriched, pluripotent human embryonic stem cell surfaces. BMC Dev. Biol. 5:15.
   Wearne, K.A., Winter, H.C., O'Shea, K., and Goldstein, I.J. 2006. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates. Glycobiology 16:981‐990.
   Yuan, K., Kucik, D., Singh, R.K., Listinsky, C.M., Listinsky, J.J., and Siegal, GP. 2008. Alterations in human breast cancer adhesion‐motility in response to changes in cell surface glycoproteins displaying alpha‐L‐fucose moieties. Int. J. Oncol. 32:797‐807.
   Zhao, Y.Y., Takahashi, M., Gu, J.G., Miyoshi, E., Matsumoto, A., Kitazume, S., and Taniguchi, N. 2008. Functional roles of N‐glycans in cell signaling and cell adhesion in cancer. Cancer Sci. 99:1304‐1310.
   Zheng, T., Peelen, D., and Smith, LM. 2005. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127:9982‐9983.
   Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R, Bidlingmaier, S., Houfek, T., Mitchell, T., Miller P., Dean, R.A., Gerstein, M., and Snyder M. 2001. Global analysis of protein activities using proteome chips. Science 293:2101‐215.
PDF or HTML at Wiley Online Library