Determination of Protein Lysine Deacetylation

Danielle J.P. Ellis1, Zhigang Yuan1, Edward Seto1

1 H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 14.12
DOI:  10.1002/0471140864.ps1412s54
Online Posting Date:  November, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Histone deacetylases (HDACs) are members of a diverse family of enzymes that catalyze the removal of an acetyl moiety from an acetyl‐lysine‐containing substrate. HDACs target a variety of substrates, including histone and nonhistone proteins, to mediate alterations in protein localization, stability, and activity. In addition, HDACs have been shown to modulate changes in gene expression, primarily through the recruitment of transcriptional cofactors to promoter regions. Mammalian HDACs are organized into distinct classes based on their homology to yeast HDACs. Classes I, II and IV HDACs are structurally and catalytically similar, whereas, class III HDACs require NAD+ as a cofactor in the deacetylation reaction. This unit provides guidance for choosing and preparing a substrate suitable for assaying an HDAC of interest and describes key protocols necessary for assaying HDAC activity. Curr. Protoc. Protein Sci. 54:14.12.1‐14.12.14. © 2008 by John Wiley & Sons, Inc.

Keywords: HDAC; protein deacetylation; histone deacetylation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Histone Deacetylase Assay Using Radiolabeled Core Histones
  • Alternate Protocol 1: Histone Deacetylase Assay Using Radiolabeled Peptides
  • Alternate Protocol 2: HDAC Assay Using a Colorimetric Substrate
  • Support Protocol 1: Radiolabeling of Core Histones as Substrates for Deacetylation Assays
  • Support Protocol 2: Radiolabeling Peptides for use as Substrates for HDAC Deacetylation Assay
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Histone Deacetylase Assay Using Radiolabeled Core Histones

  Materials
  • 5× HDAC buffer: 50 mM Tris⋅Cl, pH 8.0 (see appendix 2E)/750 mM NaCl/50% glycerol; store up to 1 year at −20°C
  • [3H]‐labeled core histones ( protocol 4)
  • HDAC sample (see )
  • HDAC inhibitor stock solutions, optional: 3.3 mM trichostatin A (TSA; for class I and II HDACs) or 2 M nicotinamide (for class III HDACs, also known as sirtuins)
  • 50 mM nicotinamide adenine dinucleotide (NAD+) cofactor stock solution (for class III HDAC assay only)
  • Stop solution: 1 M HCl/0.4 M acetic acid
  • Ethyl acetate
  • Scintillation fluid
  • Scintillation vials

Alternate Protocol 1: Histone Deacetylase Assay Using Radiolabeled Peptides

  • [3H]‐labeled peptide ( protocol 5)
  • GST‐SIRT1 or control GST protein (e.g., see unit 6.6)

Alternate Protocol 2: HDAC Assay Using a Colorimetric Substrate

  Materials
  • HDAC sample (see ) and (optional) heat‐inactivated (5 min at 95°C) HDAC sample
  • HDAC inhibitor stock solutions, optional: 3.3 mM trichostatin A (TSA; for class I and II HDACs) or 2 M nicotinamide (for class III HDACs, also known as sirtuins)
  • 10× HDAC assay buffer (Biovision)
  • HDAC substrate solution: 10 mM Boc‐Lys(Ac)‐pNA (Biovision)
  • Lysine developer (Biovision)
  • U‐bottom 96‐well plates
  • Microplate spectrophotometer (ELISA reader)

Support Protocol 1: Radiolabeling of Core Histones as Substrates for Deacetylation Assays

  Materials
  • HeLa cells, confluent on 150‐mm plate
  • 1× phosphate‐buffered saline (PBS; appendix 2E), 37°C
  • Mix A (see recipe)
  • Mix B (see recipe)
  • 2 M sodium butyrate (NaB)
  • NIB buffer: 1% Nonidet P‐40 in IB buffer (see recipe)
  • IB Buffer (see recipe)
  • Storage buffer (see recipe)
  • 5 M NaCl
  • 0.2 M H 2SO 4
  • 50‐ml tubes
  • 3500 MWCO SnakeSkin pleated dialysis tubing (Pierce)

Support Protocol 2: Radiolabeling Peptides for use as Substrates for HDAC Deacetylation Assay

  Materials
  • 2.95 kDa p53 peptide (364‐389; AHSSHLKSKKGQSTSRHKKLMFKTEG): synthetic peptide purified by HPLC to >90% purity by the supplier
  • [3H]acetic acid (NEN, 2‐5 Ci/mmol in ethanol)
  • BOP solution: 0.24 M (benzotriazol‐1‐yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (Aldrich) /0.2 M triethylamine (Aldrich) in acetonitrile; prepare fresh
  • 10 mM HCl in methanol
  • 10 mM HCl in 10% (v/v) methanol
  • 3 N HCl in 50% (v/v) isopropanol
  • Microcon‐SCX spin column (Millipore)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bertos, N.R., Wang, H.W., and Yang, X‐J. 2001. Class II histone deacetylases: Structure, function, and regulation. Biochem. Cell Biol. 79:243‐252.
   Bolden, J.E., Peart, M.J., and Johnstone, R.W. 2006. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5:769‐784.
   Carmen, A.A., Rundlet, S.E., and Grunstein, M. 1996. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271:15837‐15844.
   Ciossek, T., Julius, H., Wieland, H., Maier, T., and Beckers, T. 2008. A homogenous cellular histone deacetylase assay suitable for compound profiling and robotic screening. Anal. Biochem. 372:72‐81.
   de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B. 2003. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J. 370:737‐749.
   Duan, H., Heckman, C.A., and Boxer, L.M. 2006. Histone deacetylase inhibitors down‐regulate bcl‐2 expression and induce apoptosis in t(14;18) lymphomas. Mol. Cell Biol. 25:1608‐1619.
   Fatkins, D.G. and Zheng, W. 2008. A spectrophotometric assay of histone deacetylase 8. Anal. Biochem. 372:82‐88.
   Fischle, W., Dequied, F., Hendzel, M.J., Guenther, M.G., Lazar, M.A., Voelter, W., and Verdin, E. 2002. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N‐CoR. Mol. Cell 9:45‐57.
   Glozak, M.A. and Seto, E. 2007. Histone deacetylases and cancer. Oncogene 26:5420‐5432.
   Glozak, M.A., Sengupta, N., Zhang, X., and Seto, E. 2005. Acetylation and deacetylation of nonhistone proteins. Gene 363:15‐23.
   Gregoire, S., Xiao, L., Nie, J., Zhang, X., Xu, M., Li, J., Wong, J., Seto, E., and Yang, X.J. 2007. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 24:1280‐1295.
   Heltweg, B., Trapp, J., and Jung, M. 2005. In vitro assays for the determination of histone deacetylase activity. Methods 36:332‐337.
   Hildmann, C., Wegener, D., Riester, D., Hempel, R., Schober, A., Merana, J., Giurato, L., Guccione, S., Nielsen, T.K., Ficner, R., and Schwienhorst, A. 2006. Substrate and inhibitor specificity of class 1 and class 2 histone deacetylases. J. Biotech. 124:258‐270.
   Hoffmann, K., Heltweg, B., and Jung, M. 2001. Improvement and validation of the fluorescence‐based histone deacetylase assay using an internal standard. Arch. Pharm. Med. Chem. 334:248‐252.
   Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., and Yao, T.P. 2002. HDAC6 is a microtubule‐associated deacetylase. Nature 417:455‐458.
   Jin, Y.H., Jeon, E.J., Li, Q.L., Lee, Y.H., Choi, J.K., Kim, W.J., Lee, K.Y., and Bae, S.C. 2004. Transforming growth factor‐beta stimulates p300‐dependent RUNX3 acetylation, which inhibits ubiquitination‐mediated degradation. J. Biol. Chem. 279:290409‐29317.
   Jones, P., Altamura, S., De Francesco, R., Gallinari, P., Lahm, A., Neddermann, P., Rowley, M., Serafini, S., and Steinkuhler, C. 2008. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett. 18:1814‐1819.
   Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin‐Berny, D. 2001. Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. 11:162‐166.
   Kolle, D., Brosch, G., Lechner, T., Lusser, A., and Loidl, P. 1998. Biochemical methods for analysis of histone deacetylases. Methods 15:323‐331.
   Kouzarides, T. 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19:1176‐1179.
   Kovacs, J.J., Murphy, P.J., Gailard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B., and Yao, T.P. 2005. HDAC6 regulates Hsp90 acetylation and chaperone‐dependent activation of glucocorticoid receptor. Mol. Cell 18:601‐607.
   Lahm, A., Paolini, C., Pallaoro, M., Nardi, M.C., Jones, P., Neddermann, P., Sambuchi, S., Bottomley, M.J., Lo Surdo, P., Carfi, A., Koch, U., De Francesco, R., Steinkuhler, C., and Gallinari, P. 2007. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. U.S.A. 104:17335‐17340.
   Lee, H., Rezai‐Zadeh, N., and Seto, E. 2004. Negative regulation of histone deacetylase 8 activity by cyclic AMP‐dependent protein kinase A. Mol. Cell. Biol. 24:765‐773.
   Li, J., Staver, M.J., Curtain, M.L., Holms, J.H., Frey, R.R., Edalji, R., Smith, R., Michaelides, M.R., Davidsen, S.K., and Glaser, K.B. 2004. Expression and functional characterization of recombinant human HDAC1 and HDAC3. Life Sci. 74:2693‐2705.
   Minucci, S., and Pelicci, P.G. 2006. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6:38‐51.
   Napper, A.D., Hixon, J., McDonagh, T., Keavey, K., Pons, J‐F., Barker, J., Yau, W.T., Amouzegh, P., Flegg, A., Hamelin, E., Thomas, R.J., Kates, M., Jones, S., Navia, M.A., Saunders, J.O., DiSefano, P.S., and Curtis, R. 2005. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48:8045‐8054.
   North, B.J., Schwer, B., Ahuja, N., Marshall, B., and Verdin, E. 2005. Preparation of enzymatically active recombinant class III protein deacetylases. Methods 36:338‐345.
   Reister, D., Hildmann, C., Grunewald, S., Beckers, T., and Schwienhorst, A. 2007. Factors affecting substrate specificity of histone deacetylases. Biochem. Biophys. Res. Commun. 347:439‐445.
   Rezai‐Zedeh, N., Tsai, S.C., Wen, Y.D., Yao, Y.L., Yang, W.M., and Seto, E. 2004. Histone deacetylases: Purification of the enzymes, substrate, and assay conditions. Methods Enzymol. 377:167‐179.
   Salisbury, C.M. and Cravatt, B.F. 2007. Activity‐based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl. Acad. Sci. U.S.A. 104:1171‐1176.
   Santos‐Rosa, H. and Caldas, C. 2005. Chromatin modifier enzymes, the histone code and cancer. Eur. J. Cancer 41:2381‐2402.
   Schuetz, A., Min, J., Allali‐Hassani, A., Schapira, M., Shuen, M., Loppnau, P., Mazitschek, R., Kwiatkowski, N.P., Lewis, T.A., Maglathin, R.L., McLean, T.H., Bochkarev, A., Plotnikov, A.N., Vedadi, N., and Arrowsmith, C.H. 2008. Human HDAC7 harbors a class IIa histone deacetylase‐specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283:11355‐11363.
   Schultz, B.E., Misialek, S., Wu, J., Tang, J., Conn, M.T., Tahilramani, R., and Wong, L. 2004. Kinetics and comparative reactivity of human class I and class IIb histone deacetylases. Biochem. 43:11083‐11091.
   Taunton, J., Hassig, C.A., and Schreiber, S.L. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408‐411.
   Vaquero, A., Sternglanz, R., and Reinberg, D. 2007. NAD+‐dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26:5505‐5520.
   Watamoto, K., Towatari, M., Ozawa, Y., Miyata, Y., Okamoto, M., Abe, A., Naoe, T., and Saito, H. 2003. Altered interaction of HDAC5 with GATA‐1 during MEL cell differentiation. Oncogene. 22:9176‐9184.
   Wegener, D., Hildmann, C., and Schwienhorst, A. 2003. Recent progress in the development of assays suited for histone deacetylase inhibitor screening. Mol. Genet. Metab. 80:138‐147.
   Yao, Y.‐L., Yang, W.‐M., and Seto, E. 2001. Regulation of transcription factor yy1 by acetylation and deacetylation. Mol. Cell. Biol. 21:5979‐5991.
   Yang, X.J. and Seto, E. 2008. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9:206‐218.
   Yoo, Y.‐G., Kong, G., and Lee, M‐O. 2006. Metastasis‐associated protein 1 enhances stability of hypoxia‐inducible factor‐1α protein by recruiting histone deacetylase 1. EMBO J. 25:1231‐1241.
   Yuan, Z., Rezai‐Zadeh, N., Zhang, X., and Seto, E. 2009. Histone deacetylase activity assay. In Methods in Molecular Biology: Chromatin Protocols, 2nd ed. (S. Chellappan, ed.) Humana Press, New York.
   Zhang, Y., Gilquin, B., Khochbin, S., and Matthias, P. 2006. Two catalytic domains are required for protein deacetylation. J. Biol. Chem. 281:2401‐2404.
   Zhang, X., Yuan, Z., Zhang, Y., Yong, S., Salas‐Burgos, A., Koomen, J., Olashaw, N., Parsons, T., Yang, X.‐J., Dent, S.R., Yao, T‐P., Lane, W.S., and Seto, E. 2007. HDAC6 modulates cell mobility by altering the acetylation level of cortactin. Mol. Cell 27:197‐213.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library