Electron Microscopy and Image Processing: Essential Tools for Structural Analysis of Macromolecules

David M. Belnap1

1 University of Utah, Salt Lake City, Utah
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 17.2
DOI:  10.1002/0471140864.ps1702s82
Online Posting Date:  November, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Macromolecular electron microscopy typically depicts the structures of macromolecular complexes ranging from ∼200 kDa to hundreds of MDa. The amount of specimen required, a few micrograms, is typically 100 to 1000 times less than needed for X‐ray crystallography or nuclear magnetic resonance spectroscopy. Micrographs of frozen‐hydrated (cryogenic) specimens portray native structures, but the original images are noisy. Computational averaging reduces noise, and three‐dimensional reconstructions are calculated by combining different views of free‐standing particles (“single‐particle analysis”). Electron crystallography is used to characterize two‐dimensional arrays of membrane proteins and very small three‐dimensional crystals. Under favorable circumstances, near‐atomic resolutions are achieved. For structures at somewhat lower resolution, pseudo‐atomic models are obtained by fitting high‐resolution components into the density. Time‐resolved experiments describe dynamic processes. Electron tomography allows reconstruction of pleiomorphic complexes and subcellular structures and modeling of macromolecules in their cellular context. Significant information is also obtained from metal‐coated and dehydrated specimens. © 2015 by John Wiley & Sons, Inc.

Keywords: cryo‐electron microscopy; cryogenic electron microscopy; direct electron detector; electron cryo‐microscopy; electron crystallography; electron tomography; frozen‐hydrated specimen; immunolabeling; macromolecular complex; metal shadowing; negative stain; single‐particle analysis; three‐dimensional electron microscopy; three‐dimensional image reconstruction; tomography; transmission electron microscopy; two‐dimensional crystal; vitreous ice

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Types of Electron Microscopy
  • The Partnership of Electron Microscopy and Digital Image Processing
  • In EM, Macromolecules are Visualized One at a Time
  • Specimen Preparation
  • TEM Imaging: Focusing and Astigmatism
  • TEM Imaging: Detectors
  • The Niche of EM in Structural Analysis of Macromolecules
  • Concepts And Misconceptions
  • Resolution
  • Attainable Goals: The Art of the Possible
  • Mapping Specific Components in Large Macromolecular Complexes
  • High‐Resolution Studies
  • Heterogeneous Complexes
  • Hybrid Approaches
  • Resources and User Facilities
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Adrian, M., Dubochet, J., Lepault, J., and McDowall, A.W. 1984. Cryo‐electron microscopy of viruses. Nature 308:32‐36. doi: 10.1038/308032a0.
  Adrian, M., Dubochet, J., Fuller, S.D., and Harris, J.R. 1998. Cryo‐negative staining. Micron 29:145‐160. doi: 10.1016/S0968‐4328(97)00068‐1.
  Aebi, U., Millonig, R., Salvo, H., and Engel, A. 1996. The three‐dimensional structure of the actin filament revisited. Ann. N.Y. Acad. Sci. 483:100‐119. doi: 10.1111/j.1749‐6632.1986.tb34502.x.
  Aebi, U., ten Heggeler, B., Onorato, L., Kistler, J., and Showe, M.K. 1977b. New method for localizing proteins in periodic structures: Fab fragment labeling combined with image processing of electron micrographs. Proc. Natl. Acad. Sci. U.S.A. 74:5514‐5518. doi: 10.1073/pnas.74.12.5514.
  Aebi, U., van Driel, R., Bijlenga, R.K., ten Heggeler, B., van den Broek, R., Steven, A.C., and Smith, P.R. 1977a. Capsid fine structure of T‐even bacteriophages. Binding and localization of two dispensable capsid proteins into the P23* surface lattice. J. Mol. Biol. 110:687‐698. doi: 10.1016/S0022‐2836(77)80084‐3.
  Agrawal, R.K., Sharma, M.R., Kiel, M.C., Hirokawa, G., Booth, T.M., Spahn, C.M., Grassucci, R.A., Kaji, A., and Frank, J. 2004. Visualization of ribosome‐recycling factor on the Escherichia coli 70S ribosome: Functional implications. Proc. Nat. Acad. Sci. U.S.A. 101:8900‐8905.
  Al‐Amoudi, A. and Frangakis, A.S. 2013. Three‐dimensional visualization of the molecular architecture of cell‐cell junctions in situ by cryo‐electron tomography of vitreous sections. Methods Mol. Biol. 961:97‐117. doi: 10.1007/978‐1‐62703‐227‐8_4.
  Al‐Amoudi, A., Studer, D., and Dubochet, J. 2005. Cutting artefacts and cutting process in vitreous sections for cryo‐electron microscopy. J. Struct. Biol. 150:109‐121. doi: 10.1016/j.jsb.2005.01.003.
  Al‐Amoudi, A., Dubochet, J., Gnaegi, H., Lüthi, W., and Studer, D. 2003. An oscillating cryo‐knife reduces cutting‐induced deformation of vitreous ultrathin sections. J. Microsc. 212:26‐33. doi: 10.1046/j.1365‐2818.2003.01244.x.
  Al‐Amoudi, A., Chang, J.‐J., Leforestier, A., McDowall, A., Salamin, L.M., Norlén, L.P.O., Richter, K., Blanc, N.S., Studer, D., and Dubochet, J. 2004. Cryo‐electron microscopy of vitreous sections. EMBO J. 23:3583‐3588. doi: 10.1038/sj.emboj.7600366.
  Alberts, B. 1998. The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell 92:291‐294. doi: 10.1016/S0092‐8674(00)80922‐8.
  Allegretti, M., Mills, D.J., McMullan, G., Kühlbrandt, W., and Vonck, J. 2014. Atomic model of the F420‐reducing [NiFe] hydrogenase by electron cryo‐microscopy using a direct electron detector. eLife 3:e01963. doi: 10.7554/eLife.01963.
  Allen, T.D. and Goldberg, M.W. 1993. High‐resolution SEM in cell biology. Trends Cell Biol. 3:205‐208. doi: 10.1016/0962‐8924(93)90215‐M.
  Avila‐Sakar, A.J. and Chiu, W. 1996. Visualization of beta‐sheets and side‐chain clusters in two‐dimensional periodic arrays of streptavidin on phospholipid monolayers by electron crystallography. Biophys. J. 70:57‐68. doi: 10.1016/S0006‐3495(96)79597‐8.
  Bai, X., McMullan, G., and Scheres, S.H.W. 2015. How cryo‐EM is revolutionizing structural biology. Trends Biochem. Sci. 40:49‐57. doi: 10.1016/j.tibs.2014.10.005.
  Bai, X., Fernandez, I.S., McMullan, G., and Scheres, S.H.W. 2013. Ribosome structures to near‐atomic resolution from thirty thousand cryo‐EM particles. eLife 2:e00461. doi: 10.7554/eLife.00461.
  Bajorek, M., Schubert, H.L., McCullough, J., Langelier, C., Eckert, D.M., Stubblefield, W.M.B., Uter, N.T., Myszka, D.G., Hill, C.P., and Sundquist, W.I. 2009. Structural basis for ESCRT‐III protein autoinhibition. Nat. Struct. Mol. Biol. 16:754‐762. doi: 10.1038/nsmb.1621.
  Baker, T.S. and Cheng, R.H. 1996. A model‐based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116:120‐130. doi: 10.1006/jsbi.1996.0020.
  Baker, T.S. and Johnson, J.E. 1996. Low resolution meets high: Towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6:585‐594. doi: 10.1016/S0959‐440X(96)80023‐6.
  Baker, T.S., Drak, J., and Bina, M. 1988. Reconstruction of the three‐dimensional structure of simian virus 40 and visualization of the chromatin core. Proc. Natl. Acad. Sci. U.S.A. 85:422‐426. doi: 10.1073/pnas.85.2.422.
  Baker, T.S., Olson, N.H., and Fuller, S.D. 1999. Adding the third dimension to virus life cycles: Three‐dimensional reconstruction of icosahedral viruses from cryo‐electron micrographs. Microbiol. Mol. Biol. Rev. 63:862‐922.
  Bammes, B.E., Jakana, J., Schmid, M.F., and Chiu, W. 2010. Radiation damage effects at four specimen temperatures from 4 to 100 K. J. Struct. Biol. 169:331‐341. doi: 10.1016/j.jsb.2009.11.001.
  Bar Sadan, M., Houben, L., Enyashin, A.N., Seifert, G., and Tenne, R. 2008. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene‐like structures. Proc. Natl. Acad. Sci. USA 105:15643‐15648. doi: 10.1073/pnas.0805407105.
  Baron, M., Norman, D.G., and Campbell, I.D. 1991. Protein modules. Trends Biochem. Sci. 16:13‐17. doi: 10.1016/0968‐0004(91)90009‐K.
  Bartesaghi, A., Lecumberry, F., Sapiro, G., and Subramaniam, S. 2012. Protein secondary structure determination by constrained single‐particle cryo‐electron tomography. Structure 20:2003‐2013. doi: 10.1016/j.str.2012.10.016.
  Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A., and Subramaniam, S. 2014. Structure of β‐galactosidase at 3.2‐Å resolution obtained by cryo‐electron microscopy. Proc. Natl. Acad. Sci. USA 111:11709‐11714. doi: 10.1073/pnas.1402809111.
  Baumeister, W. 2005. From proteomic inventory to architecture. FEBS Lett. 579:933‐937. doi: 10.1016/j.febslet.2004.10.102.
  Baumeister, W. and Steven, A.C. 2000. Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25:624‐631. doi: 10.1016/S0968‐0004 (00)01720‐5.
  Belnap, D.M., Olson, N.H., and Baker, T.S. 1997. A method for establishing the handedness of biological macromolecules. J. Struct. Biol. 120:44‐51. doi: 10.1006/jsbi.1997.3896.
  Belnap, D.M., Grochulski, W.D., Olson, N.H., and Baker, T.S. 1993. Use of radial density plots to calibrate image magnification for frozen‐hydrated specimens. Ultramicroscopy 48:347‐358. doi: 10.1016/0304‐3991(93)90110‐J.
  Belnap, D.M., Watts, N.R., Conway, J.F., Cheng, N., Stahl, S.J., Wingfield, P.T., and Steven, A.C. 2003. Diversity of core antigen epitopes of hepatitis B virus. Proc. Natl. Acad. Sci. U.S.A. 100:10884‐10889. doi: 10.1073/pnas.1834404100.
  Belnap, D.M., McDermott, B.M.J., Filman, D.J., Cheng, N., Trus, B.L., Zuccola, H.J., Racaniello, V.R., Hogle, J.M., and Steven, A.C. 2000b. Three‐dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. U.S.A. 97:73‐78. doi: 10.1073/pnas.97.1.73.
  Belnap, D.M., Filman, D.J., Trus, B.L., Cheng, N., Booy, F.P., Conway, J.F., Curry, S., Hiremath, C.N., Tsang, S.K., Steven, A.C., and Hogle, J.M. 2000a. Molecular tectonic model of virus structural transitions: The putative cell entry states of poliovirus. J. Virol. 74:1342‐1354. doi: 10.1128/JVI.74.3.1342‐1354.2000.
  Benjamin, J., Ganser‐Pornillos, B.K., Tivol, W.F., Sundquist, W.I., and Jensen, G.J. 2005. Three‐dimensional structure of HIV‐1 virus‐like particles by electron cryotomography. J. Mol. Biol. 346:577‐588. doi: 10.1016/j.jmb.2004.11.064.
  Berriman, J. and Unwin, N. 1994. Analysis of transient structures by cryo‐microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56:241‐252. doi: 10.1016/0304‐3991(94)90012‐4.
  Bharat, T.A.M., Davey, N.E., Ulbrich, P., Riches, J.D., de Marco, A., Rumlova, M., Sachse, C., Ruml, T., and Briggs, J.A.G. 2012. Structure of the immature retroviral capsid at 8 Å resolution by cryo‐electron microscopy. Nature 487:385‐389. doi: 10.1038/nature11169.
  Bilbao‐Castro, J.R., Sorzano, C.O.S., García, I., and Fernández, J.J. 2004. Phan3D: Design of biological phantoms in 3D electron microscopy. Bioinformatics 20:3286‐3288. doi: 10.1093/bioinformatics/bth377.
  Black, L.W., Showe, M.K., and Steven, A.C. 1994. Morphogenesis of the T4 head. In Molecular Biology of Bacteriophage T4 (J. Karam, J.W. Drake, and K.N. Kreuzer, eds.) pp. 218‐258. American Socciety for Microbiology, Washington, D.C.
  Böttcher, B., Wynne, S.A., and Crowther, R.A. 1997. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88‐91. doi: 10.1038/386088a0.
  Bracewell, R.N. 1989. The Fourier Transform. Scientific American 260(6):86‐95 (June 1989). doi: 10.1038/scientificamerican0689‐86.
  Bremer, A., Henn, C., Engel, A., Baumeister, W., and Aebi, U. 1992. Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46:85‐111. doi: 10.1016/0304‐3991(92)90008‐8.
  Briegel, A., Chen, S., Koster, A.J., Plitzko, J.M., Schwartz, C.L., and Jensen, G.J. 2010. Correlated light and electron cryo‐microscopy. Method Enzymol. 481:317‐341. doi: 10.1016/S0076‐6879(10)81013‐4.
  Briggs, J.A.G. 2013. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23:261‐267. doi: 10.1016/j.sbi.2013.02.003.
  Brilot, A.F., Chen, J.Z., Cheng, A., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., Henderson, R., and Grigorieff, N. 2012. Beam‐induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177:630‐637. doi: 10.1016/j.jsb.2012.02.003.
  Brink, J. and Chiu, W. 1994. Applications of a slow‐scan CCD camera in protein electron crystallography. J. Struct. Biol. 113:23‐34. doi: 10.1006/jsbi.1994.1029.
  Brisson, A. and Unwin, P.N. 1984. Tubular crystals of acetylcholine receptor. J. Cell Biol. 99:1202‐1211. doi: 10.1083/jcb.99.4.1202.
  Brisson, A., Olofsson, A., Ringler, P., Schmutz, M., and Stoylova, S. 1994. Two‐dimensional crystallization of proteins on planar lipid films and structure determination by electron crystallography. Biol. Cell 80:221‐228.
  Bubeck, D., Filman, D.J., Cheng, N., Steven, A.C., Hogle, J.M., and Belnap, D.M. 2005. The structure of the poliovirus 135S cell entry intermediate at 10‐angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J. Virol. 79:7745‐7755. doi: 10.1128/JVI.79.12.7745‐7755.2005.
  Bullough, P. and R. Henderson. 1987. Use of spot‐scan procedure for recording low‐dose micrographs of beam‐sensitive specimens. Ultramicroscopy 21:223‐229. doi: 10.1016/0304‐3991(87)90147‐1.
  Campbell, M.G., Cheng, A., Brilot, A.F., Moeller, A., Lyumkis, D., Veesler, D., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., and Grigorieff, N. 2012. Movies of ice‐embedded particles enhance resolution in electron cryo‐microscopy. Structure 20:1823‐1828. doi: 10.1016/j.str.2012.08.026.
  Cantele F., Lanzavecchia S., and Bellon P.L. 2003. The variance of icosahedral virus models is a key indicator in the structure determination: A model‐free reconstruction of viruses, suitable for refractory particles. J. Struct. Biol. 141:84‐92. doi: 10.1016/S1047‐8477(02)00577‐4.
  Carrascosa, J.L. and Steven, A.C. 1978. A procedure for evaluation of significant structural differences between related arrays of protein molecules. Micron 9:199‐206.
  Castón, J.R., Belnap, D.M., Steven, A.C., and Trus, B.L. 1999. A strategy for determining the orientations of refractory particles for reconstruction from cryo‐electron micrographs with particular reference to round, smooth‐surfaced, icosahedral viruses. J. Struct. Biol. 125:209‐215. doi: 10.1006/jsbi.1999.4085.
  Cavalier, A., Spehner, D. and Humbel, B.M., editors. 2009. Handbook of Cryo‐Preparation Methods for Electron Microscopy. CRC Press, Boca Raton, Fla.
  Celia, H., Hoermann, L., Schultz, P., Lebeau, L., Mallouh, V., Wigley, D.B., Wang, J.C., Mioskowski, C., and Oudet, P. 1994. Three‐dimensional model of Escherichia coli gyrase B subunit crystallized in two‐dimensions on novobiocin‐linked phospholipid films. J. Mol. Biol. 236:618‐628. doi: 10.1006/jmbi.1994.1171.
  Cerritelli, M.E., Wall, J.S., Simon, M.N., Conway, J.F., and Steven, A.C. 1996. Stoichiometry and domainal organization of the long tail‐fiber of bacteriophage T4: A hinged viral adhesin. J. Mol. Biol. 260:767‐780. doi: 10.1006/jmbi.1996.0436.
  Ceulemans, H. and Russell, R.B. 2004. Fast fitting of atomic structures to low‐resolution electron density maps by surface overlap maximization. J. Mol. Biol. 338:783‐793. doi: 10.1016/j.jmb.2004.02.066.
  Chacon, P. and Wriggers, W. 2002. Multi‐resolution contour‐based fitting of macromolecular structures. J. Mol. Biol. 317:375‐384. doi: 10.1006/jmbi.2002.5438.
  Champeney, D.C. 1973. Fourier Transforms and Their Physical Applications. Academic Press, New York.
  Cheng, N., Conway, J.F., Watts, N.R., Hainfeld, J.F., Joshi, V., Powell, R.D., Stahl, S.J., Wingfield, P.E., and Steven, A.C. 1999. Tetrairidium, a four‐atom cluster, is readily visible as a density label in three‐dimensional cryo‐EM maps of proteins at 10‐25 Å resolution. J. Struct. Biol. 127:169‐176. doi: 10.1006/jsbi.1999.4120.
  Chiu, W. 1993. What does electron cryomicroscopy provide that X‐ray crystallography and NMR spectroscopy cannot? Annu. Rev. Biophys. Biomol. Struct. 22:233‐255. doi: 10.1146/annurev.bb.22.060193.001313.
  Cohen, C. and Parry, D.A.D. 1990. Alpha‐helical coiled coils and bundles: How to design an alpha‐helical protein. Proteins 7:1‐15. doi: 10.1002/prot.340070102.
  Comolli, L.R., Siegerist, C.E., Shin, S.‐H., Bertozzi, C., Regan, W., Zettl, A., and De Yoreo, J. 2013. Conformational transitions at an S‐layer growing boundary resolved by cryo‐TEM. Angew. Chem. Int. Ed. 52:4829‐4832. doi: 10.1002/anie.201300543.
  Conway, J.F. and Steven, A.C. 1999. Methods for reconstructing density maps of “single” particles from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128:106‐118. doi: 10.1006/jsbi.1999.4168.
  Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W., and Steven, A.C. 1995. Proteolytic and conformational control of virus capsid maturation: The bacteriophage HK97 system. J. Mol. Biol. 253:86‐99. doi: 10.1006/jmbi.1995.0538.
  Conway, J.F., Trus, B.L., Booy, F.P., Newcomb, W.W., Brown, J.C., and Steven, A.C. 1993. The effects of radiation damage on the structure of frozen hydrated HSV‐1 capsids. J. Struct. Biol. 111:222‐233. doi: 10.1006/jsbi.1993.1052.
  Conway, J.F., Cheng, N., Zlotnick, A., Wingfield, P.T., Stahl, S.J., and Steven, A.C. 1997. Visualization of a 4‐helix bundle in the hepatitis B virus capsid by cryo‐electron microscopy. Nature 386:91‐94. doi: 10.1038/386091a0.
  Conway, J.F., Watts, N.R., Belnap, D.M., Cheng, N., Stahl, S.J., Wingfield, P.T., and Steven, A.C. 2003. Characterization of a conformational epitope on hepatitis B virus core antigen and quasiequivalent variations in antibody binding. J. Virol. 77:6466‐6473. doi: 10.1128/JVI.77.11.6466‐6473.2003.
  Conway, J.F., Cheng, N., Zlotnick, A., Stahl, S.J., Wingfield, P.T., Belnap, D.M., Kanngiesser, U., Noah, M., and Steven, A.C. 1998. Hepatitis B virus capsid: Localization of the putative immunodominant loop (residues 78 to 83) on the capsid surface, and implications for the distinction between c and e‐antigens. J. Mol. Biol. 279:1111‐1121. doi: 10.1006/jmbi.1998.1845.
  Crewe, A.V., Eggenberger, D.N., Wall, J., and Welter, L.M. 1968. Electron gun using field emission source. Rev. Sci. Instrum. 39:576‐583. doi: 10.1063/1.1683435.
  Crowther, R.A. 1971. Procedures for three‐dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. Lond. B Biol. 261:221‐230. doi: 10.1098/rstb.1971.0054.
  Crowther, R.A. and Amos, L.A. 1971. Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60:123‐130. doi: 10.1016/0022‐2836(71)90452‐9.
  Dainty, J.C. and Shaw, R. 1974. Image Science: Principles, analysis and evaluation of photographic‐type imaging processes. Academic Press, London, pp. 152‐155.
  DeRosier, D.J. and Klug, A. 1968. Reconstruction of three dimensional structures from electron micrographs. Nature 217:130‐134. doi: 10.1038/217130a0.
  Downing, K.H. and Grano, D.A. 1982. Analysis of photographic emulsions for electron microscopy of two‐dimensional crystalline specimens. Ultramicroscopy 7:381‐404. doi: 10.1016/0304‐3991(82)90262‐5.
  Dryden, K.A., Wand, G., Yeager, M., Nibert, M.L., Coombs, K.M., Furlong, D.B., Fields, B.N., and Baker, T.S. 1993. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: Analysis of virions and subviral particles by cryo‐electron microscopy and image reconstruction. J. Cell Biol. 122:1023‐1041. doi: 10.1083/jcb.122.5.1023.
  Dube, P., Tavares, P., Lurz, R., and van Heel, M. 1993. The portal protein of bacteriophage SPP1: A DNA pump with 13‐fold symmetry. EMBO J. 12:1303‐1309.
  Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., and Schultz, P. 1988. Cryo‐electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129‐228. doi: 10.1017/S0033583500004297.
  Egelman, E.H. 1986. An algorithm for straightening images of curved filamentous structures. Ultramicroscopy 19:367‐373. doi: 10.1016/0304‐3991(86)90096‐3.
  Egelman, E.H. 2000. A robust algorithm for the reconstruction of helical filaments using single‐particle methods. Ultramicroscopy 85:225‐234. doi: 10.1016/S0304‐3991(00)00062‐0.
  Elmlund, H., Elmlund, D., and Bengio, S. 2013. PRIME: Probabilistic initial 3D model generation for single‐particle cryo‐electron microscopy. Structure 21:1299‐1306. doi: 10.1016/j.str.2013.07.002.
  Elmlund, H., Lundqvist, J., Al‐Karadaghi, S., Hansson, M., Hebert, H., and Lindahl, M. 2008. A new cryo‐EM single‐particle ab initio reconstruction method visualizes secondary structure elements in an ATP‐fueled AAA+ motor. J. Mol. Biol. 375:934‐947. doi: 10.1016/j.jmb.2007.11.028.
  Engel, A., Hoenger, A., Hefti, A., Henn, C., Ford, R.C., Kistler, J., and Zulauf, M. 1992. Assembly of 2‐D membrane crystals: Dynamics, crystal order, and fidelity of structure analysis by electron microscopy. J. Struct. Biol. 109:219‐234. doi: 10.1016/1047‐8477(92)90035‐9.
  Ermantraut, E., Wohlfart, K., and Tichelaar, W. 1998. Perforated support foils with pre‐defined hole size, shape and arrangement. Ultramicroscopy 74:75‐81. doi: 10.1016/S0304‐3991(98)00025‐4.
  Esquivel‐Rodríguez, J. and Kihara, D. 2013. Computational methods for constructing protein structure models from 3D electron microscopy maps. J. Struct. Biol. 184:93‐102. doi: 10.1016/j.jsb.2013.06.008.
  Estrozi, L.F. and Navaza, J. 2010. Ab initio high‐resolution single‐particle 3D reconstructions: The symmetry adapted functions way. J. Struct. Biol. 172:253‐260. doi: 10.1016/j.jsb.2010.06.023.
  Feja, B., Dürrenberger, M., Müller, S., Reichelt, R., and Aebi, U. 1997. Mass determination by inelastic electron scattering in an energy‐filtering transmission electron microscope with slow‐scan CCD camera. J. Struct. Biol. 119:72‐82. doi: 10.1006/jsbi.1997.3861.
  Förster, F., Medalia, O., Zauberman, N., Baumeister, W., and Fass, D. 2005. Retrovirus envelope protein complex structure in situ studied by cryo‐electron tomography. Proc. Natl. Acad. Sci. U.S.A. 102:4729‐4734. doi: 10.1073/pnas.0409178102.
  Frank, J. 2006a. Three‐dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State, Second Ed. Oxford University Press, New York.
  Frank, J. (ed.) 2006b. Electron Tomography: Methods for Three‐Dimensional Visualization of Structures in the Cell. Springer, New York.
  Frank, J. and Agrawal, R.K. 2000. A ratchet‐like inter‐subunit reorganization of the ribosome during translocation. Nature 406:318‐322. doi: 10.1038/35018597.
  Frank, J., Verschoor, A., and Boublik, M. 1981. Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214:1353‐1355. doi: 10.1126/science.7313694.
  Fraser, R.D.B. and MacRae, T.P. 1973. Conformation in Fibrous Proteins. Academic Press, New York.
  Fromm, S.A., Bharat, T.A.M., Jakobi, A.J., Hagen, W.J.H., and Sachse, C. 2015. Seeing tobacco mosaic virus through direct electron detectors. J. Struct. Biol. 189:87‐97. doi: 10.1016/j.jsb.2014.12.002.
  Fu, X., Himes, B.A., Ke, D., Rice, W.J., Ning, J., and Zhang, P. 2014. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 22:1875‐1882. doi: 10.1016/j.str.2014.09.017.
  Fuchs, K.H., Tittmann, P., Krusche, K., and Gross, H. 1995. Reconstruction and representation of surface data from two‐dimensional crystalline, biological macromolecules. Bioimaging 3:12‐24. doi: 10.1002/1361‐6374(199503)3:1%3c12::AID‐BIO2%3e3.3.CO;2‐U.
  Fujii, T., Iwane, A.H., and Yanagida, T., Namba, K. 2010. Direct visualization of secondary structures of F‐actin by electron cryomicroscopy. Nature 467:724‐728. doi: 10.1038/nature09372.
  Fujiyoshi, Y. 1998. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35:25‐80. doi: 10.1016/S0065‐227X(98)80003‐8.
  Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H., and Harada, Y. 1991. Development of a superfluid helium stage for high‐resolution electron microscopy. Ultramicroscopy 38:241‐251. doi: 10.1016/0304‐3991(91)90159‐4.
  Fuller, S.D. 1987. The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell 48:923‐934. doi: 10.1016/0092‐8674(87)90701‐X.
  Galkin, V.E., Orlova, A., Vos, M.R., Schröder, G.F., and Egelman, E.H. 2015. Near‐atomic resolution for one state of F‐actin. Structure 23:173‐182. doi: 10.1016/j.str.2014.11.006.
  Gallagher, S.R. 2012. One‐dimensional SDS gel electrophoresis of proteins. Curr. Protoc. Protein Sci. 68:10.1.1–10.1.44.
  Gan, L. and Jensen, G.J. 2012. Electron tomography of cells. Quart. Rev. Biophys. 45:27‐56. doi: 10.1017/S0033583511000102.
  Ge, P. and Zhou, Z.H. 2011. Hydrogen‐bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc. Natl. Acad. Sci. U.S.A. 108:9637‐9642. doi: 10.1073/pnas.1018104108.
  Giepmans, B.N.G. 2008. Bridging fluorescence microscopy and electron microscopy. Histochem. Cell Biol. 130:211‐217. doi: 10.1007/s00418‐008‐0460‐5.
  Gilmore, B.L., Showalter, S.P., Dukes, M.J., Tanner, J.R., Demmert, A.C., McDonald, S.M., and Kelly, D.F. 2013. Visualizing viral assemblies in a nanoscale biosphere. Lab Chip. 13:216‐219. doi: 10.1039/C2LC41008G.
  Glaeser, R.M. 1971. Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36:466‐482. doi: 10.1016/S0022‐5320(71)80118‐1.
  Glaeser, R.M., Downing, K., DeRosier, D., Chiu, W., and Frank, J. 2007. Electron Crystallography of Biological Macromolecules. Oxford University Press, New York.
  Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S.C., and Walz, T. 2005. Lipid‐protein interactions in double‐layered two‐dimensional AQP0 crystals. Nature 438:633‐638. doi: 10.1038/nature04321.
  Grassucci, R.A., Taylor, D.J., and Frank, J. 2007. Preparation of macromolecular complexes for cryo‐electron microscopy. Nat. Protoc. 2:3239‐3246. doi: 10.1038/nprot.2007.452.
  Grassucci, R.A., Taylor, D., and Frank, J. 2008. Visualization of macromolecular complexes using cryo‐electron microscopy with FEI Tecnai transmission electron microscopes. Nat. Protoc. 3:330‐339. doi: 10.1038/nprot.2007.474.
  Gregori, L., Hainfeld, J.F., Simon, M.N., and Goldhaber, D. 1997. Binding of amyloid beta protein to the 20S proteasome. J. Biol. Chem. 272:58‐62. doi: 10.1074/jbc.272.1.58.
  Grigorieff, N. 2000. Resolution measurement in structures derived from single particles. Acta Cryst. D 56:1270‐1277. doi: 10.1107/S0907444900009549.
  Grigorieff, N. and Harrison, S.C. 2011. Near‐atomic resolution reconstructions of icosahedral viruses from electron cryo‐microscopy. Curr. Opin. Struct. Biol. 21:265‐273. doi: 10.1016/j.sbi.2011.01.008.
  Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., and Henderson, R. 1996. Electron‐crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393‐421. doi: 10.1006/jmbi.1996.0328.
  Grose, J.H., Belnap, D.M., Jensen, J.D., Mathis, A.D., Prince, J.T., Burnett, S.H., and Breakwell, D.P. 2014. The genomes, proteomes and structure of three novel phages that infect the Bacillus cereus group and carry putative virulence factors. J. Virol. 88:11846‐11860. doi: 10.1128/JVI.01364‐14.
  Grünewald, K., Medalia, O., Gross, A., Steven, A.C., and Baumeister, W. 2003a. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: Implications of crowding. Biophys. Chem. 100:577‐591. doi: 10.1016/S0301‐4622(02)00307‐1.
  Grünewald, K., Desai, P., Winkler, D.C., Heymann, J.B., Belnap, D.M., Baumeister, W., and Steven, A.C. 2003b. Three‐dimensional structure of herpes simplex virus from cryo‐electron tomography. Science 302:1396‐1398. doi: 10.1126/science.1090284.
  Hagel, L. 1998. Gel‐filtration chromatography. Curr. Protoc. Protein Sci. 14:8.3.1‐8.3.30.
  Harapin, J., Eibauer, M., and Medalia, O. 2013. Structural analysis of supramolecular assemblies by cryo‐electron tomography. Structure 21:1522‐1530. doi: 10.1016/j.str.2013.08.003.
  Harper, S., Mozdzanowski, J., and Speicher, D. 1998. Two‐dimensional gel electrophoresis. Curr. Protoc. Protein Sci. 11:10.4.1‐10.4.36.
  Harris, J.R., Gebauer, W., and Markl, J. 1995. Keyhole limpet haemocyanin: Negative staining in the presence of trehalose. Micron 26:25‐33. doi: 10.1016/0968‐4328(94)00049‐V.
  Harris, J.R., Gebauer, W., Adrian, M., and Markl, J. 1998. Keyhole limpet hemocyanin (KLH): Slow in vitro reassociation of KLH1 and KLH2 from Immucothel. Micron® 29:329‐339. doi: 10.1016/S0968‐4328(98)00019‐5.
  Harris, J.R., Schröder, E., Isupov, M.N., Scheffler, D., Kristensen, P., Littlechild, J.A., Vagin, A.A., and Meissner, U. 2001. Comparison of the decameric structure of peroxiredoxin‐II by transmission electron microscopy and X‐ray crystallography. Biochim. Biophys. Acta 1547:221‐234. doi: 10.1016/S0167‐4838 (01)00184‐4.
  Hayat, M.A. and Miller, S.E. 1990. Negative Staining. McGraw‐Hill, New York.
  Hayward, S.B. and Glaeser, R.M. 1979. Radiation damage of purple membrane at low temperature. Ultramicroscopy 4:201‐210. doi: 10.1016/S0304‐3991(79)90211‐0.
  Heck, D.V., Trus, B.L., and Steven, A.C. 1996. Three‐dimensional structure of Bordetella pertussis fimbriae. J. Struct. Biol. 116:264‐269. doi: 10.1006/jsbi.1996.0041.
  Henderson, R. 2013. Avoiding the pitfalls of single particle cryo‐electron microscopy: Einstein from noise. Proc. Natl. Acad. Sci. U.S.A. 110:18037‐18041. doi: 10.1073/pnas.1314449110.
  Henderson, R., Chen, S., Chen, J.Z., Grigorieff, N., Passmore, L.A., Ciccarelli, L., Rubinstein, J.L., Crowther, R.A., Stewart, P.L., and Rosenthal, P.B. 2011. Tilt‐pair analysis of images from a range of different specimens in single‐particle electron cryomicroscopy. J. Mol. Biol. 413:1028‐1046. doi: 10.1016/j.jmb.2011.09.008.
  Henderson, R., Sali, A., Baker, M.L., Carragher, B., Devkota, B., Downing, K.H., Egelman, E.H., Feng, Z., Frank, J., Grigorieff, N., Jiang, W., Ludtke, S.J., Medalia, O., Penczek, P.A., Rosenthal, P.B., Rossmann, M.G., Schmid, M.F., Schröder, G.F., Steven, A.C., Stokes, D.L., Westbrook, J.D., Wriggers, W., Yang, H., Young, J., Berman, H.M., Chiu, W., Kleywegt, G.J., and Lawson, C.L. 2012. Outcome of the first electron microscopy validation task force meeting. Structure 20:205‐214. doi: 10.1016/j.str.2011.12.014.
  Heuser, J.E. 1983. Procedure for freeze‐drying molecules adsorbed to mica flakes. J. Mol. Biol. 169:155‐195. doi: 10.1016/S0022‐2836(83)80179‐X.
  Heymann, J.B. and Belnap, D.M. 2007. Bsoft: Image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157:3‐18. doi: 10.1016/j.jsb.2006.06.006.
  Heymann, J.B., Chagoyen, M., and Belnap, D.M. 2005. Common conventions for interchange and archiving of three‐dimensional electron microscopy information in structural biology. J. Struct. Biol. 151:196‐207. doi: 10.1016/j.jsb.2005.06.001.
  Heymann, J.B., Cheng, N., Newcomb, W.W., Trus, B.L., Brown, J.C., and Steven, A.C. 2003. Dynamics of herpes simplex virus capsid maturation visualized by time‐lapse cryo‐electron microscopy. Nat. Struct. Biol. 10:334‐341. doi: 10.1038/nsb922.
  Holmes, K.C., Angert, I., Kull, F.J., Jahn, W., and Schröder, R.R. 2003. Electron cryo‐microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423‐427. doi: 10.1038/nature02005.
  Hoppe, S.M., Sasaki, D.Y., Kinghorn, A.N., and Hattar, K. 2013. In‐situ transmission electron microscopy of liposomes in an aqueous environment. Langmuir 29:9958‐9961. doi: 10.1021/la401288g.
  Iancu, C.V., Wright, E.R., Heymann, J.B., and Jensen, G.J. 2006. A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J. Struct. Biol. 153:231‐240. doi: 10.1016/j.jsb.2005.12.004.
  Ichihara, S., Hayakawa, S., Saga, S., Hoshino, M., Sakuma, S., Ikeda, M., Yamaguchi, H., Hanaichi, T., and Kamiya, Y. 1984. Usefulness of a scanning laser stimulated luminescence (SLSL) system for electron microscopy–a new image recording system. J. Electron Microsc. 33:255‐257.
  Jap, B.K., Walian, P.J., and Gehring, K. 1991. Structural architecture of an outer membrane channel as determined by electron crystallography. Nature 350:167‐170. doi: 10.1038/350167a0.
  Jap, B.K., Zulauf, M., Scheybani, T., Hefti, A., Baumeister, W., Aebi, U., and Engel, A. 1992. 2D crystallization: From art to science. Ultramicroscopy 46:45‐84. doi: 10.1016/0304‐3991(92)90007‐7.
  Jensen, G.J. (ed.). 2010a. Methods in Enzymology, Vol. 481: Cryo‐EM, Part A, Sample Preparation and Data Collection. Elsevier, Amsterdam.
  Jensen, G.J. (ed.). 2010b. Methods in Enzymology, Vol. 482: Cryo‐EM, Part B, 3‐D Reconstruction. Elsevier, Amsterdam.
  Jensen, G.J. (ed.). 2010c. Methods in Enzymology, Vol. 483: Cryo‐EM, Part C, Analyses, Interpretation, and Case Studies. Elsevier, Amsterdam.
  Jensen, G.J. 2001. Alignment error envelopes for single particle analysis. J. Struct. Biol. 133:143‐155. doi: 10.1006/jsbi.2001.4334.
  Jontes, J.D., Wilson‐Kubalek, E.M., and Milligan, R.A. 1995. A 32 degree tail swing in brush border myosin I on ADP release. Nature 378:751‐753. doi: 10.1038/378751a0.
  Kajava, A.V., Aebi, U., and Steven, A.C. 2005. The parallel superpleated beta‐structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348:247‐252. doi: 10.1016/j.jmb.2005.02.029.
  Kessel, M., Maurizi, M.R., Kim, B., Kocsis, E., Trus, B.L., Singh, S.K., and Steven, A.C. 1995. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol. 250:587‐594. doi: 10.1006/jmbi.1995.0400.
  Kimura, Y., Vassylyev, D.G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., Murata, K., Hirai, T., and Fujiyoshi, Y. 1997. Surface of bacteriorhodopsin revealed by high‐resolution electron crystallography. Nature 389:206‐211. doi: 10.1038/38323.
  Kistler, J., Aebi, U., and Kellenberger, E. 1977. Freeze drying and shadowing a two‐dimensional periodic specimen. J. Ultrastruct. Res. 59:76‐86. doi: 10.1016/S0022‐5320(77)80030‐0.
  Kizilyaprak, C., Longo, G., Daraspe, J., and Humbel, B.M. 2015. Investigation of resins suitable for the preparation of biological sample for 3‐D electron microscopy. J. Struct. Biol. 189:135‐146. doi: 10.1016/j.jsb.2014.10.009.
  Klug, A. and Crowther, R.A. 1972. Three‐dimensional image reconstruction from the viewpoint of information theory. Nature 238:435‐440. doi: 10.1038/238435a0.
  Klug, A. and Finch, J.T. 1968. Structure of viruses of the papilloma‐polyoma type: IV. Analysis of tilting experiments in the electron microscope. J. Mol. Biol. 31:1‐12. doi: 10.1016/0022‐2836(68)90050‐8.
  Kocsis, E., Cerritelli, M.E., Trus, B.L., Cheng, N., and Steven, A.C. 1995. Improved methods for determination of rotational symmetries in macromolecules. Ultramicroscopy 60:219‐228. doi: 10.1016/0304‐3991(95)00070‐2.
  Kocsis, E., Greenstone, H.L., Locke, E.G., Kessel, M., and Steven, A.C. 1997. Multiple conformational states of the bacteriophage T4 capsid surface lattice induced when expansion occurs without prior cleavage. J. Struct. Biol. 118:73‐82. doi: 10.1006/jsbi.1996.3833.
  Koning, R.I. and Koster, A.J. 2009. Cryo‐electron tomography in biology and medicine. Ann. Anat. 191:427‐445. doi: 10.1016/j.aanat.2009.04.003.
  Koster, A.J. and Grünewald, K. 2014. Editorial on correlative microscopy. Ultramicroscopy 143:1‐2. doi: 10.1016/j.ultramic.2014.03.010.
  Kubalek, E.W., Le Grice, S.F.J., and Brown, P.O. 1994. Two‐dimensional crystallization of histidine‐tagged HIV‐1 reverse transcriptase promoted by a novel nickel‐chelating lipid. J. Struct. Biol. 113:117‐123. doi: 10.1006/jsbi.1994.1039.
  Kühlbrandt, W. 1992. Two‐dimensional crystallization of membrane proteins. Q. Rev. Biophys. 25:1‐49. doi: 10.1017/S0033583500004716.
  Kühlbrandt, W., Wang, D.N., and Fujiyoshi, Y. 1994. Atomic model of plant light‐harvesting complex by electron crystallography. Nature 367:614‐621. doi: 10.1038/367614a0.
  Larsson, M., Wallin, M., and Edstrom, A. 1976. Induction of a sheet polymer of tubulin by Zn2+. Exp. Cell Res. 100:104‐110. doi: 10.1016/0014‐4827(76)90332‐3.
  Lata, S., Schoehn, G., Jain, A., Pires, R., Piehler, J., Göttlinger, H.G., and Weissenhorn, W. 2008. Helical structures of ESCRT‐III are disassembled by VPS4. Science 321:1354‐1357. doi: 10.1126/science.1161070.
  Leforestier, A., Lemercier, N., and Livolant, F. 2012. Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure. Proc. Natl. Acad. Sci. U.S.A. 109:8959‐8964. doi: 10.1073/pnas.1200881109.
  Leschziner, A.E. and Nogales, E. 2006. The orthogonal tilt reconstruction method: An approach to generating single‐class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 153:284‐299. doi: 10.1016/j.jsb.2005.10.012.
  Li, X., Zheng, S.Q., Egami, K., Agard, D.A., and Cheng, Y. 2013b. Influence of electron dose rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184:251‐260. doi: 10.1016/j.jsb.2013.08.005.
  Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., and Cheng, Y. 2013a. Electron counting and beam‐induced motion correction enable near‐atomic‐resolution single‐particle cryo‐EM. Nature Methods 10:584‐590. doi: 10.1038/nmeth.2472.
  Liao, H.Y. and Frank, J. 2010. Definition and estimation of resolution in single‐particle reconstructions. Structure 18:768‐775. doi: 10.1016/j.str.2010.05.008.
  Liao, M., Cao, E., Julius, D., and Cheng, Y. 2013. Structure of the TRPV1 ion channel determined by electron cryo‐microscopy. Nature 504:107‐112. doi: 10.1038/nature12822.
  Lin, J., Cheng, N., Hogle, J.M., Steven, A.C., and Belnap, D.M. 2013. Conformational shift of a major poliovirus antigen confirmed by immuno‐cryogenic electron microscopy. J. Immunol. 191:884‐891. doi: 10.4049/jimmunol.1202014.
  Lin, J., Cheng, N., Chow, M., Filman, D.J., Steven, A.C., Hogle, J.M., and Belnap, D.M. 2011. An externalized polypeptide partitions between two distinct sites on genome‐released poliovirus particles. J. Virol. 85:9974‐9983. doi: 10.1128/JVI.05013‐11.
  Liu, X., Jiang, W., Jakana, J., and Chiu, W. 2007. Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a multi‐path simulated annealing optimization algorithm. J. Struct. Biol. 160:11‐27. doi: 10.1016/j.jsb.2007.06.009.
  Lowe, J., Li, H., Downing, K.H., and Nogales, E. 2001. Refined structure of alpha beta‐tubulin at 3.5 Å resolution. J. Mol. Biol. 313:1045‐1057. doi: 10.1006/jmbi.2001.5077.
  Lu, A., Magupalli, V.G., Ruan, J., Yin, Q., Atianand, M.K., Vos, M.R., Schröder, G.F., Fitzgerald, K.A., Wu, H., and Egelman, E.H. 2014a. Unified polymerization mechanism for the assembly of ASC‐dependent inflammasomes. Cell 156:1193‐1206. doi: 10.1016/j.cell.2014.02.008.
  Lu, P., Bai, X., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S.H.W., and Shi, Y. 2014b. Three‐dimensional structure of human γ‐secretase. Nature 512:166‐170. doi: 10.1038/nature13567.
  Ludtke, S.J., Baldwin, P.R., and Chiu, W. 1999. EMAN: Semiautomated software for high‐resolution single‐particle reconstructions. J. Struct. Biol. 128:82‐97. doi: 10.1006/jsbi.1999.4174.
  Ludtke, S.J., Chen, D.‐H., Song, J.‐L., Chuang, D.T., and Chiu, W. 2004. Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure 12:1129‐1136. doi: 10.1016/j.str.2004.05.006.
  Lupas, A., Van Dyke, M., and Stock, J. 1991. Predicting coiled coils from protein sequences. Science 252:1162‐1164. doi: 10.1126/science.252.5009.1162.
  Mader, A., Elad, N., and Medalia, O. 2010. Cryoelectron tomography of eukaryotic cells. Methods Enzymol. 483:245‐265. doi: 10.1016/S0076‐6879(10)83012‐5.
  Makhov, A.M., Hannah, J.H., Brennan, M.J., Trus, B.L., Kocsis, E., Conway, J.F., Wingfield, P.T., Simon, M.N., and Steven, A.C. 1994. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50‐nm monomeric rigid rod based on a 19‐residue repeat motif rich in beta strands and turns. J. Mol. Biol. 241:110‐124. doi: 10.1006/jmbi.1994.1478.
  Mastronarde, D.N. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36‐51. doi: 10.1016/j.jsb.2005.07.007.
  Matadeen, R., Patwardhan, A., Gowen, B., Orlova, E.V., Stark, H., Pape, T., Cuff, M., Mueller, F., Brimacombe, R., and van Heel, M. 1999. The Escherichia coli large ribosomal subunit at 7.5 Å resolution. Structure 7:1575‐1583. doi: 10.1016/S0969‐2126(00)88348‐3.
  McKenna, R., Xia, D., Willingmann, P., Ilag, L.L., and Rossmann, M.G. 1992. Structure determination of the bacteriophage ΦX174. Acta Crystallogr. B 48:499‐511. doi: 10.1107/S0108768192001344.
  McMullan, G., Clark, A.T., Turchetta, R., and Faruqi, A.R. 2009. Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411‐1416. doi: 10.1016/j.ultramic.2009.07.004.
  McMullan, G., Faruqi, A.R., Clare, D., and Henderson, R. 2014. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156‐163. doi: 10.1016/j.ultramic.2014.08.002.
  Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G., and Baumeister, W. 2002. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209‐1213. doi: 10.1126/science.1076184.
  Meek, G.A. 1976. Practical Electron Microscopy for Biologists, 2nd ed. John Wiley and Sons, Chichester, U.K.
  Merkle, K.L. and Thompson, L.J. 1999. High‐resolution electron microscopy of twist and general grain boundaries. Phys. Rev. Lett. 83:556‐559. doi: 10.1103/PhysRevLett.83.556.
  Mielanczyk, L., Matysiak, N., Michalski, M., Buldak, R., and Wojnicz, R. 2014. Closer to the native state. Critical evaluation of cryo‐techniques for transmission electron microscopy: Preparation of biological samples. Folia Histochem. Cytobiol. 52:1‐17. doi: 10.5603/FHC.2014.0001.
  Milam, L. and Erickson, H.P. 1982. Visualization of a 21‐nm axial periodicity in shadowed keratin filaments and neurofilaments. J. Cell Biol. 94:592‐596. doi: 10.1083/jcb.94.3.592.
  Milazzo, A.C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J.C., Peltier, S., Ellisman, M., Bieser, F., Matis, H.S., Wieman, H., Denes, P., Kleinfelder, S., and Xuong, N.H. 2005. Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104:152‐159. doi: 10.1016/j.ultramic.2005.03.006.
  Milligan, R.A., Whittaker, M., and Safer, D. 1990. Molecular structure of F‐actin and location of surface binding sites. Nature 348:217‐221. doi: 10.1038/348217a0.
  Milne, J.L., Shi, D., Rosenthal, P.B., Sunshine, J.S., Domingo, G.J., Wu, X., Brooks, B.R., Perham, R.N., Henderson, R., and Subramaniam, S. 2002. Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: A multifunctional catalytic machine. EMBO J. 21:5587‐5598. doi: 10.1093/emboj/cdf574.
  Milne, J.L.S., Borgnia, M.J., Bartesaghi, A., Tran, E.E.H., Earl, L.A., Schauder, D.M., Lengyel, J., Pierson, J., Patwardhan, A., and Subramaniam, S. 2013. Cryo‐electron microscopy—a primer for the non‐microscopist. FEBS Journal 280:28‐45. doi: 10.1111/febs.12078.
  Mimori, Y., Yamashita, I., Murata, K., Fujiyoshi, Y., Yonekura, K., Toyoshima, C., and Namba, K. 1995. The structure of the R‐type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249:69‐87. doi: 10.1006/jmbi.1995.0281.
  Mindell, J.A. and Grigorieff, N. 2003. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142:334‐347. doi: 10.1016/S1047‐8477(03)00069‐8.
  Misell, D.L. 1978. Image analysis, enhancement and interpretation. In Practical Methods in Electron Microscopy (A.M. Glauert, ed.), vol. 7. Elsevier/North‐Holland, Amsterdam.
  Mitsuoka, K., Hirai, T., Murata, K., Miyazawa, A., Kidera, A., Kimura, Y., and Fujiyoshi, Y. 1999. The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: Implication of the charge distribution. J. Mol. Biol. 286:861‐882. doi: 10.1006/jmbi.1998.2529.
  Miyazawa, A., Fujiyoshi, Y., and Unwin, N. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949‐955. doi: 10.1038/nature01748.
  Morgan, D.G., Owen, C., Melanson, L.A., and DeRosier, D.J. 1995. Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the alpha‐helices. J. Mol. Biol. 249:88‐110. doi: 10.1006/jmbi.1995.0282.
  Morris, D.M. and Jensen, G.J. 2008. Toward a biomechanical understanding of whole bacterial cells. Annu. Rev. Biochem. 77:583‐613. doi: 10.1146/annurev.biochem.77.061206.173846.
  Mullapudi, S., Pullan, L., Bishop, O.T., Khalil, H., Stoops, J.K., Beckmann, R., Kloetzel, P.M., Kruger, E., and Penczek, P.A. 2004. Rearrangement of the 16S precursor subunits is essential for the formation of the active 20S proteasome. Biophys. J. 87:4098‐4105. doi: 10.1529/biophysj.104.051144.
  Müller, S.A., Goldie, K.N., Bürki, R., Häring, R., and Engel, A. 1992. Factors affecting the precision of scanning transmission electron microscopy. Ultramicroscopy 46:317‐334. doi: 10.1016/0304‐3991(92)90022‐C.
  Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A., and Fujiyoshi, Y. 2000. Structural determinants of water permeation through aquaporin‐1. Nature 407:599‐605. doi: 10.1038/35036519.
  Nannenga, B.L., Shi, D., Hattne, J., Reyes, F.E., and Gonen, T. 2014. Structure of catalase determined by MicroED. eLife 3:e03600. doi: 10.7554/eLife.03600.
  Nederlof, I., Li, Y.W., van Heel, M., and Abrahams, J.P. 2013. Imaging protein three‐dimensional nanocrystals with cryo‐EM. Acta Cryst. D 69:852‐859. doi: 10.1107/S0907444913002734.
  Nermut, M.V. 1977. Freeze‐drying for electron microscopy. In Principles and Techniques of Electron Microscopy (M.A. Hayat, ed.) pp. 79‐117. Van Nostrand–Reinhold, New York.
  Newcomb, W.W. and Brown, J.C. 1989. Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. J. Virol. 63:4697‐4702.
  Newcomb, W.W., Trus, B.L., Booy, F.P., Steven, A.C., Wall, J.S., and Brown, J.C. 1993. Structure of the herpes simplex virus capsid: Molecular composition of the pentons and triplexes. J. Mol. Biol. 232:499‐511. doi: 10.1006/jmbi.1993.1406.
  Newcomb, W.W., Homa, F.L., Booy, F.P., Thomsen, D.R., Trus, B.L., Steven, A.C., Spencer, J.V., and Brown, J.C. 1996. Assembly of the herpes simplex virus capsid: Characterization of intermediates observed during cell‐free capsid formation. J. Mol. Biol. 263:432‐446. doi: 10.1006/jmbi.1996.0587.
  Nogales, E., Wolf, S.G., and Downing, K.H. 1998. Structure of the αβ tubulin dimer by electron crystallography. Nature 391:199‐203. doi: 10.1038/34465.
  Ogura, T. and Sato, C. 2006. A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections. J. Struct. Biol. 156:371‐386. doi: 10.1016/j.jsb.2006.05.016.
  Ohi, M., Li, Y., Cheng, Y., and Walz, T. 2004. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online 6:23‐34. doi: 10.1251/bpo70.
  Olofsson, A., Mallouh, V., and Brisson, A. 1994. Two‐dimensional structure of membrane‐bound annexin V at 8 Å resolution. J. Struct. Biol. 113:199‐205. doi: 10.1006/jsbi.1994.1054.
  Olson, N.H., Kolatkar, P.R., Oliveira, M.A., Cheng, R.H., Greve, J.M., McClelland, A., Baker, T.S., and Rossmann, M.G. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. U.S.A. 90:507‐511. doi: 10.1073/pnas.90.2.507.
  Pantelic, R.S., Suk, J.W., Hao, Y., Ruoff, R.S., and Stahlberg, H. 2011. Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM. Nano Lett. 11:4319‐4323. doi: 10.1021/nl202386p.
  Pascual, J., Pfuhl, M., Rivas, G., Pastore, A., and Saraste, M. 1996. The spectrin repeat folds into a three‐helix bundle in solution. FEBS Lett. 383:201‐207. doi: 10.1016/0014‐5793(96)00251‐7.
  Penczek, P., Grassucci, R.A., and Frank, J. 1994. The ribosome at improved resolution: New techniques for merging and orientation refinement in 3D cryoelectron microscopy of biological particles. Ultramicroscopy 53:251‐270. doi: 10.1016/0304‐3991(94)90038‐8.
  Perkovic, M., Kunz, M., Endesfelder, U., Bunse, S., Wigge, C., Yu, Z., Hodirnau, V.V., Scheffer, M.P., Seybert, A., Malkusch, S., Schuman, E.M., Heilemann, M., and Frangakis, A.S. 2014. Correlative light‐ and electron microscopy with chemical tags. J. Struct. Biol. 186:205‐213. doi: 10.1016/j.jsb.2014.03.018.
  Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605‐1612.
  Pierson, J., Ziese, U., Sani, M., and Peters, P.J. 2011. Exploring vitreous cryo‐section‐induced compression at the macromolecular level using electron cryo‐tomography; 80S yeast ribosomes appear unaffected. J. Struct. Biol. 173:345‐349. doi: 10.1016/j.jsb.2010.09.017.
  Porta, C., Wang, G., Cheng, H., Chen, Z., Baker, T.S., and Johnson, J.E. 1994. Direct imaging of interactions between an icosahedral virus and conjugate F(ab) fragments by cryoelectron microscopy and X‐ray crystallography. Virology 204:777‐788. doi: 10.1006/viro.1994.1593.
  Prasad, B.V.V, Hardy, M.E., Dokland, T., Bella, J., Rossmann, M.G., and Estes, M.K. 1999. X‐ray crystallographic structure of the Norwalk virus capsid. Science 286:287‐290. doi: 10.1126/science.286.5438.287.
  Quispe, J., Damiano, J., Mick, S.E., Nackashi, D.P., Fellmann, D., Ajero, T.G., Carragher, B., and Potter, C.S. 2007. An improved holey carbon film for cryo‐electron microscopy. Microsc. Microanal. 13:365‐371. doi: 10.1017/S1431927607070791.
  Radermacher, M. 1988. Three‐dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron. Microsc. Tech. 9:359‐394. doi: 10.1002/jemt.1060090405.
  Radermacher, M. 1992. Weighted back‐projection methods. In Electron Tomography, Three‐dimensional Imaging with the Transmission Electron Microscope (J. Frank, ed.) pp. 91‐116. Plenum Press, New York.
  Radermacher, M., Rao, V., Grassucci, R., Frank, J., Timerman, A.P., Fleischer, S., and Wagenknecht, T. 1994. Cryo‐electron microscopy and three‐dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J. Cell Biol. 127:411‐423. doi: 10.1083/jcb.127.2.411.
  Ranson, N.A., Farr, G.W., Roseman, A.M., Gowen, B., Fenton, W.A., Horwich, A.L., and Saibil, H.R. 2001. ATP‐bound states of GroEL captured by cryo‐electron microscopy. Cell 107:869‐879. doi: 10.1016/S0092‐8674(01)00617‐1.
  Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C., and Milligan, R.A. 1993. Structure of the actin‐myosin complex and its implications for muscle contraction. Science 261:58‐65. doi: 10.1126/science.8316858.
  Rhinow, D. and Kühlbrandt, W. 2008. Electron cryo‐microscopy of biological specimens on conductive titanium‐silicon metal glass films. Ultramicroscopy 108:698‐705. doi: 10.1016/j.ultramic.2007.11.005.
  Rigort, A., Bäuerlein F.J.B., Villa, E., Eibauer, M., Laugks, T., Baumeister, W., and Plitzko, J.M. 2012. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. U.S.A. 109:4449‐4454. doi: 10.1073/pnas.1201333109.
  Rigort, A., Bäuerlein F.J.B., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Böhm, U., Eibauer, M., Gnaegi, H., Baumeister, W., and Plitzko, J.M. 2010. Micromachining tools and correlative approaches for cellular cryo‐electron tomography. J. Struct. Biol. 172:169‐179. doi: 10.1016/j.jsb.2010.02.011.
  Roseman, A.M. 2000. Docking structures of domains into maps from cryo‐electron microscopy using local correlation. Acta Crystallogr. D Biol. Crystallogr. 56:1332‐1340. doi: 10.1107/S0907444900010908.
  Roseman, A.M., Chen, S., White, H., Braig, K., and Saibil, H.R. 1996. The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate‐binding domains in GroEL. Cell 87:241‐252. doi: 10.1016/S0092‐8674(00)81342‐2.
  Rosenthal, P.B. and Henderson, R. 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single‐particle electron cryomicroscopy. J. Mol. Biol. 333:721‐745. doi: 10.1016/j.jmb.2003.07.013.
  Rossmann, M.G. 2000. Fitting atomic models into electron‐microscopy maps. Acta Crystallogr. D Biol. Crystallogr. 56:1341‐1349. doi: 10.1107/S0907444900009562.
  Ruskin, R.S., Yu, Z., and Grigorieff, N. 2013. Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol. 184:385‐393. doi: 10.1016/j.jsb.2013.10.016.
  Russo, C.J. and Passmore, L.A. 2014a. Controlling protein adsorption on graphene for cryo‐EM using low‐energy hydrogen plasmas. Nat. Methods 11:649‐652. doi: 10.1038/nmeth.2931.
  Russo, C.J. and Passmore, L.A. 2014b. Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377‐1380. doi: 10.1126/science.1259530.
  Sachse, C., Chen, J.Z., Coureux, P.D., Stroupe, M.E., Fändrich, M., and Grigorieff, N., 2007. High‐resolution electron microscopy of helical specimens: A fresh look at tobacco mosaic virus. J. Mol. Biol. 371:812‐835. doi: 10.1016/j.jmb.2007.05.088.
  Sander, B., Golas, M.M., and Stark, H. 2005. Advantages of CCD detectors for de novo three‐dimensional structure determination in single‐particle electron microscopy. J. Struct. Biol. 151:92‐105. doi: 10.1016/j.jsb.2005.04.004.
  Sanz‐García, E., Stewart, A.B., and Belnap, D.M. 2010. The random‐model method enables ab initio three‐dimensional reconstruction of asymmetric particles and determination of particle symmetry. J. Struct. Biol. 171, 216‐222. doi: 10.1016/j.jsb.2010.03.017.
  Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., and Plitzko, J.M. 2007. Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo‐electron tomography. J. Struct. Biol. 160:135‐145. doi: 10.1016/j.jsb.2007.07.011.
  Saxton, W.O. and Baumeister, W. 1982. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127:127‐138. doi: 10.1111/j.1365‐2818.1982.tb00405.x.
  Schenk, A.D., Werten, P.J.L., Scheuring, S., de Groot, B.L., Muller, S.A., Stahlberg, H., Philippsen, A., and Engel, A. 2005. The 4.5 Å structure of human AQP2. J. Mol. Biol. 350:278‐289. doi: 10.1016/j.jmb.2005.04.030.
  Scheres, S.H.W. 2012. RELION: Implementation of a Bayesian approach to cryo‐EM structure determination. J. Struct. Biol. 180:519‐530. doi: 10.1016/j.jsb.2012.09.006.
  Scheres, S.H.W. and Chen, S. 2012. Prevention of overfitting in cryo‐EM structure determination. Nat. Methods 9:853‐854. doi: 10.1038/nmeth.2115.
  Scheres, S.H.W., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P.B., Frank, J., and Carazo, J.‐M. 2007. Disentangling conformational states of macromolecules in 3D‐EM through likelihood optimization. Nat. Methods 4:27‐29. doi: 10.1038/nmeth992.
  Schmid, M.F., Sherman, M.B., Matsudaira, P., and Chiu, W. 2004. Structure of the acrosomal bundle. Nature 431:104‐107. doi: 10.1038/nature02881.
  Schur, F.K.M., Hagen, W.J.H., de Marco, A., and Briggs, J.A.G. 2013. Determination of protein structure at 8.5 Å resolution using cryo‐electron tomography and sub‐tomogram averaging. J. Struct. Biol. 184:394‐400. doi: 10.1016/j.jsb.2013.10.015.
  Shatsky, M., Hall, R.J., Brenner, S.E., and Glaeser, R.M. 2009. A method for the alignment of heterogeneous macromolecules from electron microscopy. J. Struct. Biol. 166:67‐78. doi: 10.1016/j.jsb.2008.12.008.
  Shen, P.S., Park, J., Qin, Y., Li, X., Parsawar, K., Larson, M.H., Cox, J., Cheng, Y., Lambowitz, A.M., Weissman, J.S., Brandman, O., and Frost, A. 2015. Rqc2p and 60S ribosomal subunits mediate mRNA‐independent elongation of nascent chains. Science 347:75‐78. doi: 10.1126/science.1259724.
  Shi, D., Nannenga, B.L., Iadanza, M.G., and Gonen, T. 2013. Three‐dimensional electron crystallography of protein microcrystals. eLife 2:e01345. doi: 10.7554/eLife.01345.
  Sigworth, F.J. 1998. A maximum‐likelihood approach to single‐particle refinement. J. Struct. Biol. 122:328‐339. doi: 10.1006/jsbi.1998.4014.
  Smith, P.R. and Kistler, J. 1977. Surface reliefs computed from micrographs of heavy metal‐shadowed specimens. J. Ultrastruct. Res. 61:124‐133. doi: 10.1016/S0022‐5320 (77)90011‐9.
  Smith, T.J., Olson, N.H., Cheng, R.H., Chase, E.S., and Baker, T.S. 1993a. Structure of a human rhinovirus‐bivalently bound antibody complex: Implications for viral neutralization and antibody flexibility. Proc. Natl. Acad. Sci. U.S.A. 90:7015‐7018. doi: 10.1073/pnas.90.15.7015.
  Smith, T.J., Olson, N.H., Cheng, R.H., Liu, H., Chase, E.S., Lee, W.M., Leippe, D.M., Mosser, A.G., Rueckert, R.R., and Baker, T.S. 1993b. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J. Virol. 67:1148‐1158.
  Spahn, C.M.T. and Penczek, P.A. 2009. Exploring conformational modes of macromolecular assemblies by multiparticle cryo‐EM. Curr. Opin. Struct. Biol. 19:623‐631. doi: 10.1016/j.sbi.2009.08.001.
  Speir, J.A., Munshi, S., Wang, G., Baker, T.S., and Johnson, J.E. 1995. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X‐ray crystallography and cryo‐electron microscopy. Structure 3:63‐78. doi: 10.1016/S0969‐2126(01)00135‐6.
  Spence, J.C.H. 1980. Experimental Electron Microscopy. Clarendon Press, Oxford.
  Standfuss, J., van Scheltinga, A.C.T., Lamborghini, M., and Kühlbrandt, W. 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution. EMBO J. 24:919‐928. doi: 10.1038/sj.emboj.7600585.
  Stark, H., Zemlin, F., and Boettcher, C. 1996. Electron radiation damage to protein crystals of bacteriorhodopsin at different temperatures. Ultramicroscopy 63:75‐79. doi: 10.1016/0304‐3991(96)00045‐9.
  Stasiak, A. and Egelman, E.H. 1994. Structure and function of RecA‐DNA complexes. Experientia 50:192‐203. doi: 10.1007/BF01924002.
  Steinbrecht, R.A. and Zierold, K. 1987. Cryotechniques in Biological Electron Microscopy. Springer‐Verlag, Berlin.
  Steven, A.C. and Belnap, D.M. 2008. Cryo‐electron microscopy in the era of structural proteomics. In Structural Proteomics and its Impact on the Life Sciences (J.L. Sussman and I. Silman, eds.) pp. 269‐306. World Scientific Publishing, Singapore.
  Steven, A.C. and Navia, M.A. 1980. Fidelity of structure representation in electron micrographs of negatively stained protein molecules. Proc. Natl. Acad. Sci. U.S.A. 77:4721‐4725. doi: 10.1073/pnas.77.8.4721.
  Steven, A.C., Trus, B.L., Maizel, J.V., Unser, M., Parry, D.A.D., Wall, J.S., Hainfeld, J.F., and Studier, F. 1988. Molecular substructure of a viral receptor recognition protein: The gp17 tail‐fiber of bacteriophage T7. J. Mol. Biol. 200:351‐365. doi: 10.1016/0022‐2836(88)90246‐X.
  Steven, A.C., Kocsis, E., Unser, M., and Trus, B.L. 1991. Spatial disorders and computational cures. Int. J. Biol. Macromol. 13:174‐180. doi: 10.1016/0141‐8130(91)90044‐U.
  Stewart, M.S. 1988. Computer image processing of electron micrographs of biological structures with helical symmetry. J. Electron. Microsc. Tech. 9:325‐358. doi: 10.1002/jemt.1060090404.
  Stewart, M. and Vigers, G. 1986. Electron microscopy of frozen‐hydrated biological material. Nature 319:631‐636. doi: 10.1038/319631a0.
  Stewart, P.L., Fuller, S.D., and Burnett, R.M. 1993. Difference imaging of adenovirus: Bridging the resolution gap between X‐ray crystallography and electron microscopy. EMBO J. 12:2589‐2599.
  Stoops, J.K., Baker, T.S., Schroeter, J.P., Kolodziej, S.J., Niu, X.‐D., and Reed, L.J. 1992. Three‐dimensional structure of the truncated core of the Saccharomyces cerevisiae pyruvate dehydrogenase complex determined from negative stain and cryoelectron microscopy images. J. Biol. Chem. 267:24769‐24775.
  Strelkov, S.V., Tao, Y., Rossmann, M.G., Kurochkina, L.P., Shneider, M.M., and Mesyanzhinov, V.V. 1996. Preliminary crystallographic studies of bacteriophage T4 fibritin confirm a trimeric coiled‐coil structure. Virology 219:190‐194. doi: 10.1006/viro.1996.0236.
  Subramaniam, S. and Henderson, R. 2000. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406:653‐657. doi: 10.1038/35020614.
  Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.S., and Carragher, B. 2005. Automated molecular microscopy: The new Leginon system. J. Struct. Biol. 151:41‐60.
  Taylor, K.A. and Glaeser, R.M. 1974. Electron diffraction of frozen, hydrated protein crystals. Science 186:1036‐1037. doi: 10.1126/science.186.4168.1036.
  Taylor, K.A. and Taylor, D.W. 1994. Formation of two‐dimensional complexes of F‐actin and crosslinking proteins on lipid monolayers: Demonstration of unipolar alpha‐actinin‐F‐actin crosslinking. Biophys. J. 67:1976‐1983. doi: 10.1016/S0006‐3495(94)80680‐0.
  Thomas, D., Schultz, P., Steven, A.C., and Wall, J.S. 1994. Mass analysis of biological macromolecular complexes by STEM. Biol. Cell 80:181‐192. doi: 10.1111/j.1768‐322X.1994.tb00929.x.
  Thomas, L., Kocsis, E., Colombini, M., Erbe, E., Trus, B.L., and Steven, A.C. 1991. Surface topography and molecular stoichiometry of the mitochondrial channel, VDAC, in crystalline arrays. J. Struct. Biol. 106:161‐171. doi: 10.1016/1047‐8477(91)90085‐B.
  Thuman‐Commike, P.A. and Chiu, W. 1997. Improved common‐line‐based icosahedral particle image orientation estimation algorithms. Ultramicroscopy 68:231‐255. doi: 10.1016/S0304‐3991(97)00033‐8.
  Thuman‐Commike, P.A. and Chiu, W. 2000. Reconstruction principles of icosahedral virus structure determination using electron cryomicroscopy. Micron 31:687‐711. doi: 10.1016/S0968‐4328(99)00077‐3.
  Trus, B.L., Newcomb, W.W., Booy, F.P., Brown, J.C., and Steven, A.C. 1992. Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc. Natl. Acad. Sci. U.S.A. 89:11508‐11512. doi: 10.1073/pnas.89.23.11508.
  Trus, B.L., Roden, R.B.S., Greenstone, H.L., Vrhel, M., Schiller, J.T., and Booy, F.P. 1997. Novel structural features of bovine papillomavirus capsid revealed by a three‐dimensional reconstruction to 9 Å resolution. Nat. Struct. Biol. 4:413‐420. doi: 10.1038/nsb0597‐413.
  Tyler, J.M. and Branton, D. 1980. Rotary shadowing of extended molecules dried from glycerol. J. Ultrastruct. Res. 71:95‐102. doi: 10.1016/S0022‐5320(80)90098‐2.
  Uetrecht, C., Versluis, C., Watts, N.R., Roos, W.H., Wuite, G.J.L., Wingfield, P.T., Steven, A.C., and Heck, A.J.R. 2008. High‐resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl. Acad. Sci. U.S.A. 105:9216‐9220. doi: 10.1073/pnas.0800406105.
  Unger, V.M., Kumar, N.M., Gilula, N.B., and Yeager, M. 1997. Projection structure of a gap junction membrane channel at 7 Å resolution. Nat. Struct. Biol. 4:39‐43. doi: 10.1038/nsb0197‐39.
  Unger, V.M., Kumar, N.M., Gilula, N.B., and Yeager, M. 1999. Three‐dimensional structure of a recombinant gap junction membrane channel. Science 283:1176‐1180. doi: 10.1126/science.283.5405.1176.
  Unser, M., Sorzano, C.O.S., Thévenaz, P., Jonić, S., El‐Bez, C., De Carlo, S., Conway, J.F., and Trus, B.L. 2005. Spectral signal‐to‐noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149:243‐255. doi: 10.1016/j.jsb.2004.10.011.
  Unwin, P.N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967‐989. doi: 10.1016/j.jmb.2004.12.031.
  Unwin, P.N. and Henderson, R. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425‐440. doi: 10.1016/0022‐2836(75)90212‐0.
  Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. 2003. Locking and unlocking of ribosomal motions. Cell 114:123‐134. doi: 10.1016/S0092‐8674(03)00476‐8.
  Valpuesta, J.M. and Carrascosa, J.L. (eds.). 2015. Electron microscopy: the coming of age of a structural biology technique. Arch. Biochem. Biophys. 581:1‐2.
  van Heel, M. 1987a. Similarity measures between images. Ultramicroscopy 21:95‐99. doi: 10.1016/0304‐3991(87)90010‐6.
  van Heel, M. 1987b. Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111‐123. doi: 10.1016/0304‐3991(87)90078‐7.
  van Heel, M. and Frank, J. 1981. Use of multivariate statistics in analyzing images of biological macromolecules. Ultramicroscopy 6:187‐194.
  Vargas, J., Álvarez‐Cabrera, A.L., Marabini, R., Carazo, J.M., and Sorzano, C.O.S. 2014. Efficient initial volume determination from electron microscopy images of single particles. Bioinformatics 30:2891‐2898. doi: 10.1093/bioinformatics/btu404.
  Villa, E. and Lasker, K. 2014. Finding the right fit: Chiseling structures out of cryo‐electron microscopy maps. Curr. Opin. Struct. Biol. 25:118‐125. doi: 10.1016/j.sbi.2014.04.001.
  Villa, E., Schaffer, M., Plitzko, J.M., and Baumeister, W. 2013. Opening windows into the cell: Focused‐ion‐beam milling for cryo‐electron tomography. Curr. Opin. Struct. Biol. 23:771‐777. doi: 10.1016/j.sbi.2013.08.006.
  Volkmann, N. and Hanein, D. 1999. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125:176‐184. doi: 10.1006/jsbi.1998.4074.
  von der Ecken, J., Müller, M., Lehman, W., Manstein, D.J., Penczek, P.A., and Raunser, S. 2015. Structure of the F‐actin—tropomyosin complex. Nature 519:114‐117. doi: 10.1038/nature14033.
  Wagenknecht, T., Berkowitz, J., Grassucci, R., Timerman, A.P., and Fleischer, S. 1995. Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy. Biophys. J. 67:2286‐2295. doi: 10.1016/S0006‐3495(94)80714‐3.
  Walker, M., Knight, P., and Trinick, J. 1985. Negative staining of myosin molecules. J. Mol. Biol. 184:535‐542. doi: 10.1016/0022‐2836(85)90300‐6.
  Walker, M., Trinick, J., and White, H. 1995. Millisecond time resolution electron cryo‐microscopy of the M‐ATP transient kinetic state of the acto‐myosin ATPase. Biophys. J. 68:87S‐91S.
  Wall, J. 1979. Mass measurements with the electron microscope. In Introduction to Analytical Electron Microscopy (L. Hren, J. Goldstein, and D. Jay, eds.) pp. 333‐342. Plenum, New York.
  Wall, J.S. and Hainfeld, J.F. 1986. Mass mapping with the scanning transmission electron microscope. Annu. Rev. Biophys. Biophys. Chem. 15:355‐376. doi: 10.1146/annurev.bb.15.060186.002035.
  Walz, J., Tamura, T., Tamura, N., Grimm, R., Baumeister, W., and Koster, A.J. 1997. Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell 1:59‐65. doi: 10.1016/S1097‐2765(00)80007‐6.
  Wang, G.J., Porta, C., Chen, Z.G., Baker, T.S., and Johnson, J.E. 1992. Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X‐ray crystallography. Nature 355:275‐278. doi: 10.1038/355275a0.
  Wang, Q., Matsui, T., Domitrovic, T., Zheng, Y., Doerschuk, P.C., and Johnson, J.E. 2013. Dynamics in cryo EM reconstructions visualized with maximum‐likelihood derived variance maps. J. Struct. Biol. 181:195‐206. doi: 10.1016/j.jsb.2012.11.005.
  Wang, Z., Hryc, C.F., Bammes, B., Afonine, P.V., Jakana, J., Chen, D.‐H., Liu, X., Baker, M.L., Kao, C., Ludtke, S.J., Schmid, M.F., Adams, P.D., and Chiu, W. 2014. An atomic model of brome mosaic virus using direct electron detection and real‐space optimization. Nat. Commun. 5:4808. doi: 10.1038/ncomms6808.
  Watts, N.R., Misra, M., Wingfield, P.T., Stahl, S.J., Cheng, N., Trus, B.L., Steven, A.C., and Williams, R.W. 1998. Three‐dimensional structure of HIV‐1 Rev protein filaments. J. Struct. Biol. 121:41‐52. doi: 10.1006/jsbi.1998.3964.
  Weinkauf, S., Bacher, A., Baumeister, W., Ladenstein, R., Huber, R., and Bachmann, L. 1991. Correlation of metal decoration and topochemistry on protein surfaces. J. Mol. Biol. 221:637‐645. doi: 10.1016/0022‐2836(91)80078‐9.
  Wetzel, T. and Baumeister, W. 1995. Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2:199‐204. doi: 10.1038/nsb0395‐199.
  Whittaker, M., Wilson‐Kubalek, E.M., Smith, J.E., Faust, L., Milligan, R.A., and Sweeney, H.L. 1995. A 35‐Å movement of smooth muscle myosin on ADP release. Nature 378:748‐751. doi: 10.1038/378748a0.
  Williams, R.C. and Fisher, H.W. 1970. Electron microscopy of TMV under conditions of minimal beam exposure. J. Mol. Biol. 52:121‐123. doi: 10.1016/0022‐2836(70)90181‐6.
  Wingfield, P.T., Stahl, S.J., Payton, M.A., Venkatesan, S., Misra, M., and Steven, A.C. 1991. HIV‐1 Rev expressed in recombinant Escherichia coli: Purification, polymerization, and conformational properties. Biochemistry 30:7527‐7534. doi: 10.1021/bi00244a023.
  Winkelmann, D.A., Baker, T.S., and Rayment, I. 1991. Three‐dimensional structure of myosin subfragment‐1 from electron microscopy of sectioned crystals. J. Cell Biol. 114:701‐713. doi: 10.1083/jcb.114.4.701.
  Wisedchaisri, G., Reichow, S.L., and Gonen, T. 2011. Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19:1381‐1393. doi: 10.1016/j.str.2011.09.001.
  Woolfson, D.N. and Alber, T. 1995. Predicting oligomerization states of coiled coils. Protein Sci. 4:1596‐1607. doi: 10.1002/pro.5560040818.
  Wriggers, W., Milligan, R.A., and McCammon, J.A. 1999. Situs: A package for docking crystal structures into low‐resolution maps from electron microscopy. J. Struct. Biol. 125:185‐195. doi: 10.1006/jsbi.1998.4080.
  Wrigley, N. 1968. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J. Ultrastruct. Res. 24:454‐464. doi: 10.1016/S0022‐5320(68)80048‐6.
  Wu, X., Milne, J.L.S., Borgnia, M.J., Rostapshov, A.V. Subramaniam, S., and Brooks, B.R. 2003. A core‐weighted fitting method for docking atomic structures into low‐resolution maps: Application to cryo‐electron microscopy. J. Struct. Biol. 141:63‐76. doi: 10.1016/S1047‐8477(02)00570‐1.
  Yan, X., Dryden, K.A., Tang, J., and Baker, T.S. 2007. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J. Struct. Biol. 157:211‐225. doi: 10.1016/j.jsb.2006.07.013.
  Yang, Y.S., Datta, A., Hainfeld, J.F., Furuya, F.R., Wall, J.S., and Frey, P.A. 1994. Mapping the lipoyl groups of the pyruvate dehydrogenase complex by use of gold cluster labels and scanning transmission electron microscopy. Biochemistry 33:9428‐9437. doi: 10.1021/bi00198a008.
  Yeager, M., Berriman, J.A., Baker, T.S., and Bellamy, A.R. 1994. Three‐dimensional structure of the rotavirus haemagglutinin VP4 by cryo‐electron microscopy and difference map analysis. EMBO J. 13:1011‐1018.
  Yoder, M.D., Keen, N.T., and Jurnak, F. 1993. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 260:1503‐1507. doi: 10.1126/science.8502994.
  Yonekura, K., Maki‐Yonekura, S., and Namba, K. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643‐650. doi: 10.1038/nature01830.
  Yoshioka, C., Carragher, B., and Potter, C.S. 2010. Cryomesh™: A new substrate for cryo‐electron microscopy. Microsc. Microanal. 16:43‐53. doi: 10.1017/S1431927609991310.
  Yu, X., Jin, L., and Zhou, Z.H. 2008. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo‐electron microscopy. Nature 453:415‐419. doi: 10.1038/nature06893.
  Zeitler, E. 1990. Radiation damage in biological electron microscopy. In Biophysical Electron Microscopy: Basic Concepts and Modern Techniques (P.W. Hawkes and E. Valdre, eds.) pp. 289‐308. Academic Press, London.
  Zeitler, E. 1992. The photographic emulsion as analog recorder for electrons. Ultramicroscopy 46:405‐416. doi: 10.1016/0304‐3991(92)90027‐H.
  Zeldin, O.B. and Brunger, A.T. 2013. Gently does it for submicron crystals. eLife 2:e01662.
  Zhang, X., Jin, L., Fang, Q., Hui, W.H., and Zhou, Z.H. 2010. 3.3 Å cryo‐EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472‐482. doi: 10.1016/j.cell.2010.03.041.
  Zhang, X., Guo, H., Jin, L., Czornyj, E., Hodes, A., Hui, W.H., Nieh, A.W., Miller, J.F., and Zhou, Z.H. 2013. A new topology of the HK97‐like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 A resolution. eLife 2:e01299. doi: 10.7554/eLife.01299.
  Zlotnick, A., Cheng, N. Stahl, S.J., Conway, J.F., Steven, A.C., and Wingfield, P.T. 1997. Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: Implications for morphogenesis and organization of encapsidated RNA. Proc. Natl. Acad. Sci. U.S.A. 94:9556‐9561. doi: 10.1073/pnas.94.18.9556.
  Zuo, J.M. 2000. Electron detection characteristics of a slow‐scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Techniq. 49:245‐268. doi: 10.1002/(SICI)1097‐0029(20000501)49:3%3c245::AID‐JEMT4%3e3.0.CO;2‐O.
  Zuo, J.M., McCartney, M.R., and Spence, J.C.H. 1996. Performance of imaging plates for electron recording. Ultramicroscopy 66:35‐47. doi: 10.1016/S0304‐3991(96)00076‐9.
PDF or HTML at Wiley Online Library