Principles of Macromolecular X‐Ray Crystallography

Alison B. Hickman1, David R. Davies1

1 National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 17.3
DOI:  10.1002/0471140864.ps1703s10
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

X‐ray crystallography is one of the major tools available for protein structural analysis. This unit provides an introductory review of the principles of X‐ray crystallography that covers how the image is generated and analyzed. The second half of the unit describes strategies for producing crystals of protein, including methods for dealing with proteins that do not easily form crystals.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Crystal Structure Determination by X‐Ray Diffraction
  • Procedures for Crystallization
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bentsen, A.‐K., Larsen, T.A., Kadziola, A., Larsen, S., and Harlow, K.W. 1996. Overexpression of Bacillus subtilis phosphoribosylpyrophosphate synthetase and crystallization and preliminary x‐ray characterization of the free enzyme and its substrate‐effector complexes. Proteins 24:238‐246.
   Blundell, T.L. and Johnson, L.N. 1976. Protein Crystallography. Academic Press, San Diego.
   Boddupalli, S.S., Hasemann, C.A., Ravichandran, K.G., Lu, J.‐Y., Goldsmith, E.J., Deisenhofer, J., and Peterson, J.A. 1992. Crystallization and preliminary x‐ray diffraction analysis of P450terp and the hemoprotein domain of P450BM‐3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily. Proc. Natl. Acad. Sci. U.S.A. 89:5567‐5571.
   Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L., and Sigler, P.B. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578‐586.
   Brunger, A.T. 1992. The free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472‐474.
   Burgess, B.K., Jacobs, D.B., and Stiefel, E.I. 1980. Large‐scale purification of high activity Azotobacter vinelandii nitrogenase. Biochim. Biophys. Acta 614:196‐209.
   Bushman, F.D., Engelman, A., Palmer, I., Wingfield, P., and Craigie, R. 1993. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. U.S.A. 90:3428‐3432.
   Carter, C.W. Jr. 1992. Design of crystallization experiments and protocols. In Crystallization of Nucleic Acids and Proteins: A Practical Approach (A. Ducruix and R. Giegé, eds.) pp. 47‐71. Oxford University Press, New York.
   Carter, C.W. Jr. and Carter, C.W. 1979. Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 50:760‐763.
   Clubb, R.T., Mizuuchi, M., Huth, J.R., Omichinski, J.G., Savilahti, H., Mizuuchi, K., Clore, G.M., and Gronenborn, A.M. 1996. The wing of the enhancer‐binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Proc. Natl. Acad. Sci. U.S.A. 93:1146‐1150.
   Cohen, S.L. 1996. Domain elucidation by mass spectrometry. Structure 4:1013‐1016.
   Collaborative Computer Project No. 4. (CCP‐4). 1994. Acta Cryst. Sect. A 50:760‐763.
   Cormack, B. 1997. Directed mutagenesis using the polymerase chain reaction. In Current Protocols in Molecular Biology (F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 8.5.1‐8.5.10. John Wiley & Sons, New York.
   Craigie, R., Hickman, A.B., and Engelman, A. 1995. Integrase. In HIV: A Practical Approach, Vol. 2 (J. Karn, ed.) pp. 53‐71. Oxford University Press, Oxford.
   Dale, G.E., Broger, C., Langen, H., D'Arcy, A., and Stüber, D. 1994. Improving protein solubility through rationally designed amino acid replacements: Solubilization of the trimethoprim‐resistant type S1 dihydrofolate reductase. Protein Eng. 7:933‐939.
   Drenth, J. 1994. Principles of Protein X‐Ray Crystallography. Springer‐Verlag, New York.
   Ducruix, A. and Giegé, R. 1992. Methods of crystallization. In Crystallization of Nucleic Acids and Proteins: A Practical Approach (A. Ducruix and R. Giegé, eds.) pp. 73‐98. Oxford University Press, New York.
   Dyda, F., Hickman, A.B., Jenkins, T.M., Engelman, A., Craigie, R., and Davies, D.R. 1994. Crystal structure of the catalytic domain of HIV‐1 integrase: Similarity to other polynucleotidyl transferases. Science 266:1981‐1986.
   Efimov, V.P., Engel, J., and Malashkevich, V.N. 1996. Crystallization and preliminary crystallographic study of the pentamerizing domain from cartilage oligomeric matrix protein: A five‐stranded α‐helical bundle. Proteins 24:259‐262.
   Eijkelenboom, A.P.A.M., Puras‐Lutzke, R.A., Boelens, R., Plasterk, R.H.A., Kaptein, R., and Hard, K. 1995. The DNA‐binding domain of HIV‐1 integrase has an SH3‐like fold. Nature Struct. Biol. 2:807‐810.
   Engelman, A. and Craigie, R. 1992. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66:6361‐6369.
   Engelman, A., Hickman, A.B., and Craigie, R. 1994. The core and carboxyl‐terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol. 68:5911‐5917.
   Ferré‐d'Anaré, A.R. and Burley, S. 1994. Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure 2:357‐359.
   Fishel, L.A., Villafranca, J.E., Mauro, J.M., and Kraut, J. 1987. Yeast cytochrome c peroxidase: Mutagenesis and expression in Escherichia coli show tryptophan‐51 is not the radical site in compound I. Biochemistry 26:351‐360.
   Fitzgerald, P.M.D. 1988. MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. J. Appl. Crystallogr. 2:273‐278.
   Gilliland, G.L. and Bickman, D.M. 1990. The Biological Macromolecule Crystallization Database: A tool for developing crystallization strategies. Methods 1:6‐11.
   Gilliland, G.L. and Ladner, J.E. 1996. Crystallization of biological macromolecules for X‐ray diffraction studies. Curr. Opin. Struct. Biol. 6:595‐603.
   Gilliland, G.L., Tung, M., Blakeslee, D.M., and Ladner, J.E. 1994. Biological Macromolecule Crystallization Database, Version 3.0: New features, data and the NASA archive for protein crystal growth data. Acta Crystallogr. Sect. D 50:408‐413.
   Green, D.W., Ingram, V.M., and Perutz, M.F. 1954. The structure determination of haemoglobin. IV. Sign determination by the isomorphous replacement method. Proc. R. Soc. Lond. A225:287‐307.
   Grishin, N.V., Osterman, A.L., Goldsmith, E.J., and Phillips, M.A. 1996. Crystallization and preliminary X‐ray studies of ornithine decarboxylase from Trypanosoma brucei. Proteins 24:272‐273.
   Guilloteau, J.P., Fromage, N., Ries‐Kautt, M., Reboul, S., Bocquet, D., Dubois, H., Faucher, D., Colonna, C., Ducruix, A., and Becquart, J. 1996. Purification, stabilization, and crystallization of a modular protein: Grb2. Proteins 25:112‐119.
   Hansen, J.C., Lebowitz, J., and Demeler, B. 1994. Analytical ultracentrifugation of complex macromolecular systems. Biochemistry 33:13155‐13163.
   Hensley, P. 1996. Defining the structure and stability of macromolecular assemblies in solution: The re‐emergence of analytical ultracentrifugation as a practical tool. Structure 4:367‐373.
   Jenkins, T.M., Hickman, A.B., Dyda, F., Ghirlando, R., Davies, D.R., and Craigie, R. 1995. Catalytic domain of human immunodeficiency virus type 1 integrase: Identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc. Natl. Acad. Sci. U.S.A. 92:6057‐6061.
   Jones, T.A., Zhou, J.Y., Cowan, S.W., and Kjeldgaard, M. 1991. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Sect. A 47:110‐119.
   Jones, C., Mulloy, B., and Sanderson, M.R. (eds.) 1996. Crystallographic Methods and Protocols. In Methods in Molecular Biology, Vol. 56. Humana Press, Totowa, N.J.
   Kovari, L.C., Momany, C., and Rossman, M.G. 1995. The use of antibody fragments for crystallization and structure determinations. Structure 3:1291‐1293.
   Kühlbrandt, W. 1988. Three‐dimensional crystallization of membrane proteins. Q. Rev. Biophys. 21:429‐477.
   Laver, W.G. 1990. Crystallization of antibody‐protein complexes. Methods 1:70‐74.
   Lodi, P.J., Ernst, J.A., Kuszewski, J., Hickman, A.B., Engelman, A., Craigie, R., Clore, G.M., and Gronenborn, A.M. 1995. Solution structure of the DNA binding domain of HIV‐1 integrase. Biochemistry 34:9826‐9833.
   Luft, J.R. and DeTitta, G.T. 1995. Chaperone salts, polyethylene glycol and rates of equilibration in vapor‐diffusion crystallization. Acta Crystallogr. Sect. D 51:780‐785.
   McPherson, A. 1982. Preparation and Analysis of Protein Crystals. John Wiley & Sons, New York.
   McPherson, A. 1985. Crystallization of macromolecules: General principles. Methods Enzymol. 114:112‐120.
   McPherson, A. 1990. Current approaches to macromolecular crystallization. Eur. J. Biochem. 189:1‐23.
   McRee, D.E. 1993. Practical Protein Crystallography. Academic Press, New York.
   Mol, C.D., Harris, J.M., McIntosh, E.M., and Tainer, J.A. 1996. Human dUTP pyrophosphatase: Uracil recognition by a β hairpin and active sites formed by three separate subunits. Structure 4:1077‐1092.
   Navaza, J. 1994. AMORE: An automated package for molecular replacement. Acta Crystallogr. Sect. A 50:157‐163.
   Prodromou, C., Piper, P.W., and Pearl, L.H. 1996. Expression and crystallization of the yeast Hsp82 chaperone, and preliminary X‐ray diffraction studies of the amino‐terminal domain. Proteins 25:517‐522.
   Ramachandran, G.N., Ramakrishnan, C., and Sasisekjaran, V. 1963. Stereochemistry of polypeptide chain configuration. J. Mol. Biol. 7:95‐99.
   Rhodes, C. 1993. Crystallography Made Crystal Clear: A Guide For Users Of Macromolecular Models. Academic Press, New York.
   Robert, M.C., Provost, K., and Lefaucheux, F. 1992. Crystallization in gels and related methods. In Crystallization of Nucleic Acids and Proteins: A Practical Approach (A. Ducruix and R. Giegé, eds.) pp. 27‐143. Oxford University Press, New York.
   Romier, C., Ficner, R., Reuter, K., and Suck, D. 1996. Purification, crystallization, and preliminary X‐ray diffraction studies of tRNA‐guanine transglycosylase from Zymomonas mobilis. Proteins 24:516‐519.
   Sasisekharan, V. 1962. Stereochemical criteria for polypeptide and protein structures. In Collagen (N. Ramanathan, ed.) pp. 39‐78. John Wiley & Sons, NewYork.
   Scopes, R. 1982. Protein Purification: Principles and Practice, p. 52. Springer‐Verlag, New York.
   Sousa, R. 1995. The use of glycerol, polyols, and other protein structure stabilizing agents in protein crystallization. Acta Crystallogr. Sect. D 51:271‐277.
   Stellwagen, E. 1990. Gel filtration. Methods Enzymol. 182:317‐328.
   Stura, E.A. and Wilson, I.A. 1992. Seeding techniques. In Crystallization of Nucleic Acids and Proteins: A Practical Approach (A. Ducruix and R. Giegé, eds.) pp. 99‐126. Oxford University Press, New York.
   Sweet, R.M. (ed.) 1997. Macromolecular Crystallography. Methods Enzymol. Vol. 276.
   Tickle, I.J. and Driessen, H.P. 1996. Molecular replacement using known structural information. In Methods in Molecular Biology (J.M. Walker, ed.), Vol. 56, pp. 173‐203. Humana Press, Totowa, N.J.
   Weber, P.C. 1991. Physical principles of protein crystallization. Adv. Prot. Chem. 41:1‐36.
   Westhof, E. and Dumas, P. 1996. Refinement of protein and nucleic acid structures. In Methods in Molecular Biology (J.M. Walker, ed.), Vol. 56, pp. 227‐244. Humana Press, Totowa, N.J.
   Windsor, W.T., Walter, L.J., Syto, R., Fossetta, J., Cook, W.J., Nagabhushan, T.L., and Walter, M.R. 1996. Purification and crystallization of a complex between human interferon γ receptor (extracellular domain) and human interferon γ. Proteins 26:108‐114.
   Wyckoff, H.W., Hirs, C.H.W., and Timasheff, S.G. (eds.) 1985. Diffraction methods for biological molecules (Parts A and B). Methods Enzymol. Vols. 114 and 115.
   Xie, X., Kokubo, T., Cohen, S.L., Mirza, U.A., Hoffmann, A., Chait, B.T., Roeder, R.G., Nakatani, Y., and Burley, S.K. 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380:316‐322.
   Yang, W., Hendrickson, W.A., Crouch, R.J., and Satow, Y. 1990. Structure of ribonuclease H phased at 2 Å by MAD analysis of the selenomethionine protein. Science 249:1398‐1403.
   Zhang, F., Strand, A., Robbins, D., Cobb, M.H., and Goldsmith, E.J. 1994. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367:704‐711.
Internet Resources
   http://www.hamptonresearch.com
  Hampton Research Home Page; discusses aspects of protein crystallography; contains links to other Web sites.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library