Introduction to Atomic Force Microscopy (AFM) in Biology

Laurent Kreplak1

1 Department of Physics & Atmospheric Science, Dalhousie University, Halifax
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 17.7
DOI:  10.1002/cpps.14
Online Posting Date:  August, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer‐ to angstrom‐scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano‐scale to the micro‐scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to “stay alive” within a physiological‐like environment while temporal changes in structure are measured—e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.

Keywords: topography; force spectroscopy; manipulation; fluorescence microscopy; vibrational spectroscopy; high speed scanning

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Experimental Setup
  • Applications
  • Image Interpretation: Troubleshooting and Instrumental Effects
  • Summary
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Allen, M.J., Hud, N.V., Balooch, M., Tench, R.J., Siekhaus, W.J., and Balhorn, R. 1992. Tip‐radius‐induced artifacts in AFM images of protamine‐complexed DNA fibers. Ultramicroscopy 42‐44:1095‐1100. doi: 10.1016/0304‐3991(92)90408‐C.
  Allen, S., Davies, J., Dawkes, A.C., Davies, M.C., Edwards, J.C., Parker, M.C., Roberts, C.J., Sefton, J., Tendler, S.J.B., and Williams, P.M. 1996. In situ observation of streptavidin‐biotin binding on an immunoassay well surface using an atomic force microscope. FEBS Lett. 390:161‐164. doi: 10.1016/0014‐5793(96)00651‐5.
  Allison, D.P., Hinterdorfer, P., and Han, W. 2002. Biomolecular force measurements and the atomic force microscope. Curr. Opin. Biotechnol. 13:47‐51. doi: 10.1016/S0958‐1669(02)00283‐5.
  Bailo, E. and Deckert, V. 2008. Tip‐enhance Raman spectroscopy of single RNA strands: Towards a novel direct‐sequencing method. Angew. Chem. Int. Ed. Engl. 47:1658‐1661. doi: 10.1002/anie.200704054.
  Baldwin, S.J., Quigley, A.S., Clegg, C., and Kreplak, L. 2014. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils. Biophys. J. 107:1794‐1801. doi: 10.1016/j.bpj.2014.09.003.
  Bechtel, H.A., Muller, E.A., Olmon, R.L., Martin, M.C., and Raschke, M.B. 2014. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. U.S.A. 111:7191‐7196. doi: 10.1073/pnas.1400502111.
  Binnig, G., Quate, C.F., and Gerber, C. 1986. Atomic force microscope. Phys. Rev. Lett. 56:930‐933. doi: 10.1103/PhysRevLett.56.930.
  Bustamante, C., Rivetti, C., and Keller, D.J. 1997. Scanning force microscopy under aqueous solutions. Curr. Opin. Struct. Biol. 7:709‐716. doi: 10.1016/S0959‐440X(97)80082‐6.
  Bustamante, C., Guthold, M., Zhu, X., and Yang, G. 1999. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274:16665‐16668. doi: 10.1074/jbc.274.24.16665.
  Carrion‐Vazquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, S.E., Clarke, J., and Fernandez, J.M. 1999. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl. Acad. Sci. U.S.A. 96:3694‐3699. doi: 10.1073/pnas.96.7.3694.
  Chen, C.H., Clegg, D.O., and Hansma, H.G. 1998. Structures and dynamic motion of laminin‐1 as observed by atomic force microscopy. Biochemistry 37:8262‐8267. doi: 10.1021/bi973097j.
  Cheung, C.L., Hafner, J.H., and Lieber, C.M. 2000. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high‐resolution imaging. Proc. Natl. Acad. Sci. U.S.A. 97:3809‐3813. doi: 10.1073/pnas.050498597.
  Clausen‐Schaumann, H., Seitz, M., Krautbauer, R., and Gaub, H.E. 2000. Force spectroscopy with single bio‐molecules. Curr. Opin. Chem. Biol. 4:524‐530. doi: 10.1016/S1367‐5931(00)00126‐5.
  Czajkowsky, D.M. and Shao, Z. 1998. Submolecular resolution of single macromolecules with atomic force microscopy. FEBS Lett. 430:51‐54. doi: 10.1016/S0014‐5793(98)00461‐X.
  Czajkowsky, D.M., Iwamoto, H., Cover, T.L., and Shao, Z. 1999. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl. Acad. Sci. U.S.A. 96:2001‐2006. doi: 10.1073/pnas.96.5.2001.
  Dammer, U., Hegner, M., Anselmetti, D., Wagner, P., Dreier, M., Huber, W., and Guntherodt, H.J. 1996. Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 70:2437‐2441. doi: 10.1016/S0006‐3495(96)79814‐4.
  Domke, J., Parak, W.J., George, M., Gaub, H.E., and Radmacher, M. 1999. Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28:179‐186. doi: 10.1007/s002490050198.
  Dorn, I.T., Eschrich, R., Seemuller, E., Guckenberger, R., and Tampe, R. 1999. High‐resolution AFM‐imaging and mechanistic analysis of the 20 S proteasome. J. Mol. Biol. 288:1027‐1036. doi: 10.1006/jmbi.1999.2714.
  Dorobantu, L.S., Bhattacharjee, S., Foght, J.M., and Gray, M.R. 2008. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24:4944‐4951. doi: 10.1021/la7035295.
  Dufrene, Y.F., Martinez‐Martin, D., Medalsy, I., Alsteens, D., and Müller, D.J. 2013. Multiparametric imaging of biological systems by force‐distance curve‐based AFM. Nat. Methods 10:847‐854. doi: 10.1038/nmeth.2602.
  Efimov, A.E., Tonevitsky, A.G., Dittrich, M., and Matsko, N.B. 2007. Atomic force microscope (AFM) combined with the ultramicrotome: A novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. J. Microsc. 226:207‐217. doi: 10.1111/j.1365‐2818.2007.01773.x.
  Eghiaian, F., Rico, F., Colom, A., Casuso, I., and Scheuring, S. 2014. High‐speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett. 588:3631‐3638. doi: 10.1016/j.febslet.2014.06.028.
  Engel, A. and Müller, D.J. 2000. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7:715‐718. doi: 10.1038/78929.
  Engel, A., Gaub, H.E., and Müller, D.J. 1999. Atomic force microscopy: A forceful way with single molecules. Curr. Biol. 9:R133‐R136. doi: 10.1016/S0960‐9822(99)80081‐5.
  Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S., and Superfine, R. 1999. Nanometre‐scale rolling of carbon nanotubes. Nature 397:236‐238. doi: 10.1038/16662.
  Fisher, T.E., Marszalek, P.E, and Fernandez, J.M. 2000. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7:719‐724. doi: 10.1038/78936.
  Fisher, T.E., Marszalek, P.E., Oberhauser, A.F., Carrion‐Vazquez, M., and Fernandez, J.M. 1999a. The micro‐mechanics of single molecules studied with atomic force microscopy. J. Physiol. (Lond). 520:5‐14. doi: 10.1111/j.1469‐7793.1999.00005.x.
  Fisher, T.E., Oberhauser, A.F., Carrion‐Vazquez, M., Marszalek, P.E., and Fernandez, J.M. 1999b. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24:379‐384. doi: 10.1016/S0968‐0004(99)01453‐X.
  Florin, E.‐L., Moy, V.T., and Gaub, H.E. 1994. Adhesion forces between individual ligand‐receptor pairs. Science 264:415‐417. doi: 10.1126/science.8153628.
  Fotiadis, D., Hasler, L., Müller, D.J., Stahlberg, H., Kistler, J., and Engel, A. 2000. Surface tongue‐and‐groove contours on lens MIP facilitate cell‐to‐cell adherence. J. Mol. Biol. 300:779‐789. doi: 10.1006/jmbi.2000.3920.
  Fotiadis, D., Müller, D.J., Tsiotis, G., Hasler, L., Tittmann, P., Mini, T., Jeno, P., Gross, H., and Engel, A. 1998. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283:83‐94. doi: 10.1006/jmbi.1998.2097.
  Fritz, J., Katopodis, A.G., Kolbinger, F., and Anselmetti, D. 1998. Force‐mediated kinetics of single P‐selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 95:12283‐12288. doi: 10.1073/pnas.95.21.12283.
  Goldsbury, C., Aebi, U., and Frey, P. 2001. Visualizing the growth of Alzheimer's β amyloid‐like fibrils. Trends Mol. Med. 7:582. doi: 10.1016/S1471‐4914(01)02180‐3.
  Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T., and Cooper, G.J. 1999. Watching amyloid fibrils grow by time‐lapse atomic force microscopy. J. Mol. Biol. 285:33‐39. doi: 10.1006/jmbi.1998.2299.
  Green, J.D., Kreplak, L., Goldsbury, C., Li‐Blatter, X., Stolz, M., Cooper, G.S., Seelig, A., Kistler, J., and Aebi, U. 2004. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J. Mol. Biol. 342:877‐887. doi: 10.1016/j.jmb.2004.07.052.
  Gullekson, C., Lucas, L., Hewitt, K., and Kreplak, L. 2011. Surface‐sensitive Raman spectroscopy of Collagen I fibrils. Biophys. J. 100:1837‐1845. doi: 10.1016/j.bpj.2011.02.026.
  Guolla, L., Bertrand, M., Haase, K., and Pelling, A.E. 2012. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J. Cell Sci. 125:603‐613. doi: 10.1242/jcs.088302.
  Hansma, H.G., Kim, K.J., Laney, D.E., Garcia, R.A., Argaman, M., Allen, M.J., and Parsons, S.M. 1997. Properties of biomolecules measured from atomic force microscope images: A review. J. Struct. Biol. 119:99‐108. doi: 10.1006/jsbi.1997.3855.
  Heinz, W.F. and Hoh, J.H. 1999. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17:143‐150. doi: 10.1016/S0167‐7799(99)01304‐9.
  Hofmann, U.G., Rotsch, C., Parak, W.J., and Radmacher, M. 1997. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol. 119:84‐91. doi: 10.1006/jsbi.1997.3868.
  Hoh, J.H. and Schoenenberger, C.A. 1994. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107:1105‐1114.
  Horber, J.K., Mosbacher, J., Haberle, W., Ruppersberg, J.P., and Sakmann, B. 1995. A look at membrane patches with a scanning force microscope. Biophys. J. 68:1687‐1693. doi: 10.1016/S0006‐3495(95)80346‐2.
  Houser, J.R., Hudson, N.E., Ping, L., O'Brien, E.T. 3rd, Superfine, R., Lord, S.T., and Falvo, M.R. 2010. Evidence that alphaC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers. Biophys. J. 99:3038‐3047. doi: 10.1016/j.bpj.2010.08.060.
  Hutter, J.L. and Bechhoefer, J. 1993. Calibration of atomic force microscope tips. Rev. Sci. Instr. 64:1868‐1873. doi: 10.1063/1.1143970.
  Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, A. 1993. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65:2437‐2446. doi: 10.1016/S0006‐3495(93)81327‐4.
  Karrasch, S., Hegerl, R., Hoh, J., Baumeister, W., and Engel, A. 1994. Atomic force microscopy produces faithful high‐resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. U.S.A. 91:836‐838. doi: 10.1073/pnas.91.3.836.
  Kasas, S., Thomson, N.H., Smith, B.L., Hansma, H.G., Zhu, X., Guthold, M., Bustamante, C., Kool, E.T., Kashlev, M., and Hansma, P.K. 1997. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461‐468. doi: 10.1021/bi9624402.
  Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T., 2010. Video imaging of walking myosin V by high‐speed atomic force microscopy. Nature 468:72‐76. doi: 10.1038/nature09450.
  Kreplak, L., Wang, H., Aebi, U., and Kong, X.P. 2007. Atomic force microscopy of mammalian urothelial surface. J. Mol. Biol. 374:365‐373. doi: 10.1016/j.jmb.2007.09.040.
  Kreplak, L., Herrmann, H., and Aebi, U. 2008. Tensile properties of single desmin intermediate filaments. Biophys. J. 94:2790‐2799. doi: 10.1529/biophysj.107.119826.
  Lal, R. and John, S.A. 1994. Biological applications of atomic force microscopy. Am. J. Physiol. 266:C1‐C21.
  Lamontagne, C.‐A., Cuerrier, C.M., and Grandbois, M. 2008. AFM as a tool to probe and manipulate cellular processes. Pflugers Arch. 456:61‐70. doi: 10.1007/s00424‐007‐0414‐0.
  Levadny, V.G., Belaya, M.L., Pink, D.A., and Jericho, M.H. 1996. Theory of electrostatic effects in soft biological interfaces using atomic force microscopy. Biophys. J. 70:1745‐1752. doi: 10.1016/S0006‐3495(96)79737‐0.
  Ludwig, T., Kirmse, R., Poole, K., and Schwarz, U.S. 2008. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch. 456:29‐49. doi: 10.1007/s00424‐007‐0398‐9.
  McPherson, A., Malkin, A.J., and Kuznetsov, Y.G. 2000. Atomic force microscopy in the study of macromolecular crystal growth. Annu. Rev. Biophys. Biomol. Struct. 29:361‐410. doi: 10.1146/annurev.biophys.29.1.361.
  McPherson, A., Malkin, A.J., Kuznetsov, Y.G., and Plomp, M. 2001. Atomic force microscopy applications in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 57:1053‐1060. doi: 10.1107/S0907444901008824.
  Mitsui, K., Hara, M., and Ikai, A. 1996. Mechanical unfolding of alpha(2)‐macroglobulin molecules with atomic force microscope. FEBS Lett. 385:29‐33. doi: 10.1016/0014‐5793(96)00319‐5.
  Möller, C., Allen, M., Elings, V., Engel, A., and Müller, D.J. 1999. Tapping‐mode atomic force microscopy produces faithful high‐resolution images of protein surfaces. Biophys. J. 77:1150‐1158. doi: 10.1016/S0006‐3495(99)76966‐3.
  Moreno‐Herrero, F., Perez, M., Baro, A.M., and Avila, J. 2004. Characterization by atomic force microscopy of Alzheimer paired helical filaments under physiological conditions. Biophys. J. 86:517‐525. doi: 10.1016/S0006‐3495(04)74130‐2.
  Mou, J.X., Yang, J., and Shao, Z.F. 1995. Atomic force microscopy of cholera toxin B‐oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248:507‐512. doi: 10.1006/jmbi.1995.0238.
  Mou, J., Sheng, S., Ho, R., and Shao, Z. 1996a. Chaperonins GroEL and GroES: Views from atomic force microscopy. Biophys. J. 71:2213‐2221. doi: 10.1016/S0006‐3495(96)79422‐5.
  Mou, J., Czajkowsky, D.M., Sheng, S., Ho, R., and Shao, Z. 1996b. High resolution surface structure of E. coli GroES oligomer by atomic force microscopy. FEBS Lett. 381:161‐164. doi: 10.1016/0014‐5793(96)00112‐3.
  Mucke, N., Kreplak, L., Kirmse, R., Wedig, T., Herrmann, H., Aebi, U., and Langowski, J. 2004. Assessing the flexibility of intermediate filaments with atomic force microscopy. J. Mol. Biol. 335:1241‐1250. doi: 10.1016/j.jmb.2003.11.038.
  Müller, D.J. and Engel, A. 1997. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys. J. 73:1633‐1644. doi: 10.1016/S0006‐3495(97)78195‐5.
  Müller, D.J., Engel, A., and Amrein, M. 1997a. Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens. Bioelectron. 12:867‐877. doi: 10.1016/S0956‐5663(97)00051‐1.
  Müller, D.J., Engel, A., Carrascosa, J., and Velez, M. 1997b. The bacteriophage o29 head‐tail connector imaged at high resolution with atomic force microscopy in buffer solution. EMBO J. 16:101‐107.
  Müller, D.J., Amrein, M., and Engel, A. 1997c. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119:172‐188. doi: 10.1006/jsbi.1997.3875.
  Müller, D.J., Fotiadis, D., and Engel, A. 1998. Mapping flexible protein domains at subnanometer resolution with the atomic force microscope. FEBS Lett. 430:105‐111. doi: 10.1016/S0014‐5793(98)00623‐1.
  Müller, D.J., Baumeister, W., and Engel, A. 1999a. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 96:13170‐13174. doi: 10.1073/pnas.96.23.13170.
  Müller, D.J., Fotiadis, D., Scheuring, S., Müller, S.A., and Engel, A. 1999b. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy. Biophys. J. 76:1101‐1111. doi: 10.1016/S0006‐3495(99)77275‐9.
  Neumeister, J.M. and Ducker, W.A. 1994. Lateral, normal and longitudinal spring constants of atomic force microscopy cantilevers. Rev. Sci. Instrum. 65:2527‐2531. doi: 10.1063/1.1144646.
  Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H.E., and Müller, D.J. 2000. Unfolding pathways of individual bacteriorhodopsins. Science 288:143‐146. doi: 10.1126/science.288.5463.143.
  Pesen, D. and Hoh, J.H. 2005. Micromechanical architecture of the endothelial cell cortex. Biophys. J. 88:670‐679. doi: 10.1529/biophysj.104.049965.
  Pfreundschuh, M., Martinez‐Martin, D., Mulvihill, E., Wegmann, S., and Müller, D.J. 2014. Multiparametric high‐resolution imaging of native proteins by force‐distance curve‐based AFM. Nat. Protoc. 9:1113‐1130. doi: 10.1038/nprot.2014.070.
  Pozzi, E.A., Sonntag, M.D., Jiang, N., Klingsporn, J.M., Hersam, M.C., and Van Duyne, R.P. 2013. Tip‐enhanced Raman imaging: An emergent tool for probing biology at the nanoscale. ACS Nano 7:885‐888. doi: 10.1021/nn400560t.
  Raab, A., Han, W., Badt, D., Smith‐Gill, S., Lindsay, S., Schindler, H., and Hinterdorfer, P. 1999. Antibody recognition imaging by atomic force microscopy. Nat. Biotech. 17:902‐905.
  Radmacher, M. 1997. Measuring the elastic properties of biological samples with the atomic force microscope. IEEE Med. Eng. Biol. 16:47‐57. doi: 10.1109/51.582176.
  Radmacher, M., Fritz, M., Hansma, H.G., and Hansma, P.K. 1994. Direct observation of enzyme activity with the atomic force microscopy. Science 265:1577‐1579. doi: 10.1126/science.8079171.
  Radmacher, M., Fritz, M., and Hansma, P.K. 1995. Imaging soft samples with the atomic force microscope: Gelatin in water and propanol. Biophys. J. 69:264‐270. doi: 10.1016/S0006‐3495(95)79897‐6.
  Reviakine, I., Bergsma‐Schutter, W., and Brisson, A. 1998. Growth of protein 2‐D con supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol. 121:356‐361. doi: 10.1006/jsbi.1998.4003.
  Richter, M. Hedegaard, M., Deckert‐Gaudig, T., Lampen, P., and Deckert, V. 2011. Laterally resolved and direct spectroscopic evidence of nanometer‐sized lipid and protein domains on a single cell. Small 7:209‐214. doi: 10.1002/smll.201001503.
  Rico, F., Gonzalez, L., Casuso, I., Puig‐Vidal, M., and Scheuring, S. 2013. High‐speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342:741‐743. doi: 10.1126/science.1239764.
  Rief, M., Gautel, M., and Gaub, H.E. 2000. Unfolding forces of titin and fibronectin domains directly measured by AFM. Adv. Exp. Med. Biol. 481:129‐136. doi: 10.1007/978‐1‐4615‐4267‐4_8.
  Rief, M., Oesterhelt, F., Heymann, B., and Gaub, H.E. 1997a. Single molecule force spectroscopy on polysaccharides by AFM. Science 275:1295‐1298. doi: 10.1126/science.275.5304.1295.
  Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. 1997b. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109‐1112. doi: 10.1126/science.276.5315.1109.
  Rinia, H.A., Kik, R.A., Demel, R.A., Snel, M.M., Killian, J.A., van Der Eerden, J.P., and de Kruijff, B. 2000. Visualization of highly ordered striated domains induced by transmembrane peptides in supported phosphatidylcholine bilayers. Biochemistry 39:5852‐5858. doi: 10.1021/bi000010c.
  Sader, J.E., Chon, J.W.M., and Mulvaney, P. 1999. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Inst. 70:3967‐3969. doi: 10.1063/1.1150021.
  Sader, J.E., Sanelli, J.A., Adamson, B.D., Monty, J.P., Wei, X., Crawford, S.A., Friend, J.R., Marusic, I., Mulvaney, P., and Bieske, E.J. 2012. Spring constant calibration of atomic force microscopy cantilevers of arbitrary shape. Rev. Sci. Inst. 83:103705. doi: 10.1063/1.4757398.
  Schabert, F.A. and Engel, A. 1994. Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys. J. 67:2394‐2403. doi: 10.1016/S0006‐3495(94)80726‐X.
  Schabert, F.A., Henn, C., and Engel, A. 1995. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268:92‐94. doi: 10.1126/science.7701347.
  Scheuring, S., Müller, D.J., Ringler, P., Heymann, J.B., and Engel, A. 1999a. Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscopy. J. Microsc. 193:28‐35. doi: 10.1046/j.1365‐2818.1999.00434.x.
  Scheuring, S., Ringler, P., Borgina, M., Stahlberg, H., Müller, D.J., Agre, P., and Engel, A. 1999b. High resolution topographs of the Escherichia coli waterchannel aquaporin Z. EMBO J. 18:4981‐4987. doi: 10.1093/emboj/18.18.4981.
  Scheuring, S., Freiss‐Husson, F., Engel, A., Rigaud, J., and Ranck, J. 2001a. High resolution topographs of the Rubrivivax gelatinosus light‐harvesting complex 2. EMBO J. 20:3029‐3035. doi: 10.1093/emboj/20.12.3029.
  Scheuring, S., Fotiadis, D., Möller, C., Müller, S.A., Engel, A., and Müller, D.J. 2001b. Single proteins observed by atomic force microscopy. Single Mol. 2:59‐67. doi: 10.1002/1438‐5171(200107)2:2%3c59::AID‐SIMO59%3e3.0.CO;2‐P.
  Scheuring, S., Stahlberg, H., Chami, M., Houssin, C., Rigaud, J., and Engel, A. 2002a. Charting and unzipping the surface‐layer of Corynebacterium glutamicum with the atomic force microscope. Mol. Microbiol. 44:675‐684. doi: 10.1046/j.1365‐2958.2002.02864.x.
  Scheuring, S., Müller, D.J., Stahlberg, H., Engel, H.‐A., and Engel, A. 2002b. Sampling the conformational space of membrane protein surfaces with the AFM. Eur. Biophys. J. 31:172‐178. doi: 10.1007/s00249‐001‐0197‐8.
  Schoenenberger, C.A. and Hoh, J.H. 1994. Slow cellular dynamics in MDCK and R5 cells monitored by time‐lapse atomic force microscopy. Biophys. J. 67:929‐936. doi: 10.1016/S0006‐3495(94)80556‐9.
  Seelert, H., Poetsch, A., Dencher, N.A., Engel, A., Stahlberg, H., and Müller, D.J. 2000. Proton powered turbine of a plant motor. Nature 405:418‐419. doi: 10.1038/35013148.
  Severin, N., Barner, J., Kalachev, A.A., and Rabe, J.P. 2004. Manipulation and overstretching of genes on solid substrates. Nano Lett. 4:577‐579. doi: 10.1021/nl035147d.
  Shi, D., Somlyo, A.V., Somlyo, A.P., and Shao, Z. 2001. Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution. J. Microsc. 201:377‐382. doi: 10.1046/j.1365‐2818.2001.00844.x.
  Sotres, J., Lostao, A., Ebner, A., Gomez‐Moreno, C., Gruber, H.J., Hinterdorfer, P., and Baro, A.M. 2008. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. ChemPhysChem 9:590‐599. doi: 10.1002/cphc.200700597.
  Stahlberg, H., Müller, D.J., Suda, K., Fotiadis, D., Engel, A., Matthey, U., Meier, T., and Dimroth, P. 2001. Bacterial ATP synthase has an undacemeric rotor. EMBO Rep. 2:229‐235. doi: 10.1093/embo‐reports/kve047.
  Stolz, M., Stoffler, D., Aebi, U., and Goldsbury, C. 2000. Monitoring biomolecular interactions by time‐lapse atomic force microscopy. J. Struct. Biol. 131:171‐180. doi: 10.1006/jsbi.2000.4301.
  Stolz, M., Raiteri, R., Daniels, A.U., VanLandingham, M.R., Baschong, W., and Aebi, U. 2004. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation‐type atomic force microscopy. Biophys. J. 86:3269‐3283. doi: 10.1016/S0006‐3495(04)74375‐1.
  Su, H.N., Ran, L.Y., Chen, Z.H., Qin, Q.L., Shi, M., Song, X.Y., Chen, X.L., Zhang, Y.Z., and Xie, B.B. 2014. The ultrastructure of type I collagen at the nanoscale: Large or small D‐spacing distribution? Nanoscale 6:8134‐8139. doi: 10.1039/C4NR01268B.
  Thomson, N.H., Fritz, M., Radmacher, M., Cleveland, J.P., Schmidt, C.F., and Hansma, P.K. 1996. Protein tracking and detection of protein motion using atomic force microscopy. Biophys. J. 70:2421‐2431. doi: 10.1016/S0006‐3495(96)79812‐0.
  Uchihashi, T., Kodera, N., and Ando, T. 2012. Guide to video recording of structure dynamics and dynamic processes of proteins by high‐speed atomic force microscopy. Nat. Protoc. 7:1193‐1206. doi: 10.1038/nprot.2012.047.
  van den Akker, C.C., Deckert‐Gaudig, T., Schleeger, M., Velikov, K.P., Deckert, V., Bonn, M., and Koenderink, G.H. 2015. Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip‐enhanced Raman spectroscopy. Small 11:4131‐4139. doi: 10.1002/smll.201500562.
  Viani, M.B., Schafer, T.E., Chand, A., Rief, M., Gaub, H.E., and Hansma, P.K., 1999. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86:2258‐2262. doi: 10.1063/1.371039.
  Viani, M.B., Pietrasanta, L.I., Thompson, J.B., Chand, A., Gebeshuber, I.C., Kindt, J.H., Richter, M., Hansma, H.G., and Hansma, P.K. 2000. Probing protein‐protein interactions in real time. Nat. Struct. Biol. 7:644‐647. doi: 10.1038/77936.
  Wagner, P. 1998. Immobilization strategies for biological scanning probe microscopy. FEBS Lett. 430:112‐115. doi: 10.1016/S0014‐5793(98)00614‐0.
  Wegmann, S., Medalsy, I.D., Mandelkow, E., and Müller, D.J. 2013. The fuzzy coat of pathological human Tau fibrils is a two‐layered polyelectrolyte brush. Proc. Natl. Acad. Sci. U.S.A. 110:E313‐E321. doi: 10.1073/pnas.1212100110.
  Willemsen, O.H., Snel, M.M., van der Werf, K.O., de Grooth, B.G., Greve, J., Hinterdorfer, P., Gruber, H.J., Schindler, H., van Kooyk, Y., and Figdor, C.G. 1998. Simultaneous height and adhesion imaging of antibody‐antigen interactions by atomic force microscopy. Biophys. J. 75:2220‐2228. doi: 10.1016/S0006‐3495(98)77666‐0.
  Xu, S.H. and Arnsdorf, M.F. 1995. Electrostatic force microscope for probing surface charges in aqueous solutions. Proc. Natl. Acad. Sci. U.S.A. 92:10384‐10388. doi: 10.1073/pnas.92.22.10384.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library