Neutron Scattering Techniques and Applications in Structural Biology

John F. Ankner1, William T. Heller1, Kenneth W. Herwig1, Flora Meilleur2, Dean A.A. Myles1

1 Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2 Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, North Carolina
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 17.16
DOI:  10.1002/0471140864.ps1716s72
Online Posting Date:  April, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Neutron scattering is exquisitely sensitive to the position, concentration, and dynamics of hydrogen atoms in materials and is a powerful tool for the characterization of structure‐function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, nondestructive suite of instruments for biophysical characterization that provides spatial and dynamic information spanning from Ångstroms to microns and from picoseconds to microseconds, respectively. Applications in structural biology range from the atomic‐resolution analysis of individual hydrogen atoms in enzymes through to meso‐ and macro‐scale analysis of complex biological structures, membranes, and assemblies. The large difference in neutron scattering length between hydrogen and deuterium allows contrast variation experiments to be performed and enables H/D isotopic labeling to be used for selective and systematic analysis of the local structure, dynamics, and interactions of multi‐component systems. This overview describes the available techniques and summarizes their practical application to the study of biomolecular systems. Curr. Protoc. Protein Sci. 72:17.16.1‐17.16.34. © 2013 by John Wiley & Sons, Inc.

Keywords: neutron scattering; bio‐macromolecule structure; membranes; protein dynamics; diffraction; quasi‐elastic; reflectometry; SANS; deuteration

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Principles
  • Neutron Diffraction
  • Small‐Angle Neutron Scattering (SANS)
  • Neutron Reflectometry
  • Dynamics in Biological Systems
  • Deuterium Labeling
  • Conclusion
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adachi, M., Ohhara, T., Kurihara, K., Tamada, T., Honjo, E., Okazaki, N., Arai, S., Shoyama, Y., Kimura, K., Matsumura, H., Sugiyama, S., Adachi, H., Takano, K., Mori, Y., Hidaka, K., Kimura, T., Hayashi, Y., Kiso, Y., and Kuroki, R. 2009. Structure of HIV‐1 protease in complex with potent inhibitor KNI‐272 determined by high‐resolution X‐ray and neutron crystallography. Proc. Natl. Acad. Sci. U.S.A. 106: 4641‐4646.
   Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Echols, N., Headd, J.J., Hung, L.W., Jain, S., Kapral, G.J., Kunstleve, R.W.G., McCoy, A.J., Moriarty, N.W., Oeffner, R.D., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., and Zwart, P.H. 2011. The Phenix software for automated determination of macromolecular structures. Methods 55: 94‐106.
   Afonine, P.V., Mustyakimov, M., Grosse‐Kunstleve, R.W., Moriarty, N.W., Langan, P., and Adams, P.D. 2010. Joint X‐ray and neutron refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 66: 1153‐1163.
   Alexandrov, V., Komarov, V.L., Arronet, N.J., Denko, E.I., and Konstantinova, M.F. 1965. Influence of D20 on resistance of plant and animal cells, cellular models and actomyosin to some denaturing agents. Nature 205: 286‐287.
   Arai, S., Chatake, T., Minezaki, Y., and Niimura, N. 2002. Crystallization of a large single crystal of a B‐DNA decamer for a neutron diffraction experiment by the phase‐diagram technique. Acta Crystallogr. D Biol. Crystallogr. 58: 151‐153.
   Arai, S., Chatake, T., Suzuki, N., Mizuno, H., and Niimura, N. 2004. More rapid evaluation of biomacromolecular crystals for diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 60: 1032‐1039.
   Augustus, A.M., Reardon, P.N., Heller, W.T., and Spicer, L.D. 2006. Structural basis for the differential regulation of DNA by the methionine repressor MetJ. J. Biol. Chem. 281: 34269‐34276.
   Bee, M. 1988. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science. Taylor & Francis, London.
   Bellissent‐Funel, M.C., Zanotti, J.M., and Chen, S.H. 1996. Slow dynamics of water molecules on the surface of a globular protein. Faraday Discuss. 103: 281‐294.
   Bennett, B., Langan, P., Coates, L., Mustyakimov, M., Schoenborn, B., Howell, E.E., and Dealwis, C. 2006. Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate. Proc. Natl. Acad. Sci. U.S.A. 103: 18493‐18498.
   Bhatia, C.R. and Smith, H.H. 1968. Adaptation and growth response of Arabidopsis thaliana to deuterium. Planta 80: 176.
   Blakeley, M.P. 2009. Neutron macromolecular crystallography. Crystallogr. Rev. 15: 157‐218.
   Blakeley, M.P., Kalb, A.J., Helliwell, J.R., and Myles, D.A. 2004. The 15‐K neutron structure of saccharide‐free concanavalin A. Proc. Natl. Acad. Sci. U.S.A. 101: 6405‐16410.
   Blakeley, M.P., Ruiz, F., Cachau, R., Hazemann, I., Meilleur, F., Mitschler, A., Ginell, S., Afonine, P., Ventura, O.N., Cousido‐Siah, A., Haertlein, M., Joachimiak, A., Myles, D., and Podjarny, A. 2008. Quantum model of catalysis based on a mobile proton revealed by subatomic X‐ray and neutron diffraction studies of h‐aldose reductase. Proc. Natl. Acad. Sci. U.S.A. 105: 1844‐1848.
   Blakeley, M.P., Teixeira, S.C., Petit‐Haertlein, I., Hazemann, I., Mitschler, A., Haertlein, M., Howard, E., and Podjarny, A.D. 2010. Neutron macromolecular crystallography with LADI‐III. Acta Crystallogr. D Biol. Crystallogr. 66: 1198‐1205.
   Blundell, T. L. and Johnson, L. (eds.). 1976. Protein Crystallography (Molecular Biology Series). Academic Press, San Diego.
   Bon, C., Lehmann, M.S., and Wilkinson, C. 1999. Quasi‐Laue neutron‐diffraction study of the water arrangement in crystals of triclinic hen egg‐white lysozyme. Acta Crystallogr. D Biol. Crystallogr. 55: 978‐987.
   Born, M. and Wolf, E. 1999. Principles of Optics, Seventh Ed. Cambridge University Press, Cambridge, United Kingdom.
   Borreguero, J.M., He, J., Meilleur, F., Weiss, K.L., Brown, C.M., Myles, D.A., Herwig, K.W., and Agarwal, P.K. 2011. RedoX‐promoting protein motions in rubredoxin. J. Phys. Chem. B 115: 8925‐8936.
   Bradshaw, J.P., Darkes, M.J., Harroun, T.A., Katsaras, J., and Epand, R.M. 2000. Oblique membrane insertion of viral fusion peptide probed by neutron diffraction. Biochemistry 39: 6581‐6585.
   Brunger, A.T., Adams, P.D., and Rice, L.M. 1998. New applications of simulated annealing in crystallographic refinement. Direct Meth. Solving Macromol. Struct. 507: 143‐157.
   Budayova‐Spano, M., Bonnete, F., Ferte, N., El Hajji, M., Meilleur, F., Blakeley, M.P., and Castro, B. 2006a. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8‐azaxanthin. Acta Crystallogr. F Cryst. Struct. 62: 306‐309.
   Budayova‐Spano, M., Fisher, S.Z., Dauvergne, M.T., Agbandje‐McKenna, M., Silverman, D.N., Myles, D.A., and McKenna, R. 2006b. Production and X‐ray crystallographic analysis of fully deuterated human carbonic anhydrase II. Acta Crystallogr. F Cryst. Struct. 62: 6‐9.
   Burgess, I., Li, M., Horswell, S.L., Szymanski, G., Lipkowski, J., Satija, S., and Majewski, J. 2005. Influence of the electric field on a bio‐mimetic film supported on a gold electrode. Colloid Surface B 40:117‐122.
   Caliskan, G., Briber, R.M., Thirumalai, D., Garcia‐Sakai, V., Woodson, S.A., and Sokolov, A.P. 2006. Dynamic transition in tRNA is solvent induced. J. Am. Chem. Soc. 128: 32‐33.
   Campbell, J.W. 1995. Lauegen, an X‐windows‐based program for the processing of Laue X‐ray‐diffraction data. J. Appl. Cryst. 28: 228‐236.
   Campbell, J.W., Hao, Q., Harding, M.M., Nguti, N.D., and Wilkinson, C. 1998. LAUEGEN version 6.0 and INTLDM. J. Appl. Cryst. 31: 496‐502.
   Capel, M.S., Engelman, D.M., Freeborn, B.R., Kjeldgaard, M., Langer, J.A., Ramakrishnan, V., Schindler, D.G., Schneider, D.K., Schoenborn, B.P., Sillers, I.Y., et al. 1987. A complete mapping of the proteins in the small ribosomal‐subunit of Escherichia coli. Science 238: 1403‐1406.
   Chacon, P., Diaz, J.F., Moran, F., and Andreu, J.M. 2000. Reconstruction of protein form with X‐ray solution scattering and a genetic algorithm. J. Mol. Biol. 299: 1289‐1302.
   Chatake, T., Mizuno, N., Voordouw, G., Higuchi, Y., Arai, S., Tanaka, I., and Niimura, N. 2003. Crystallization and preliminary neutron analysis of the dissimilatory sulfite reductase D (DsrD) protein from the sulfate‐reducing bacterium Desulfovibrio vulgaris. Acta Crystallogr. D Biol. Crystallogr. 59:2306‐2309.
   Chauvin, C., Witz, J., and Jacrot, B. 1978. Structure of Tomato Bushy Stunt Virus—Model for protein‐RNA interaction. J. Mol. Biol. 124: 641‐651.
   Chen, S.H., Liu, L., Chu, X., Zhang, Y., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. 2006. Experimental evidence of fragile‐to‐strong dynamic crossover in DNA hydration water. J. Chem. Phys. 125: 171103.
   Chu, X.Q., Fratini, E., Baglioni, P., Faraone, A., and Chen, S.H. 2008. Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Phys. Rev. E 77:011908.
   Coates, L., Erskine, P.T., Wood, S.P., Myles, D.A., and Cooper, J.B. 2001. A neutron Laue diffraction study of endothiapepsin: Implications for the aspartic proteinase mechanism. Biochemistry 40: 13149‐13157.
   Coates, L., Tuan, H.F., Tomanicek, S., Kovalevsky, A., Mustyakimov, M., Erskine, P., and Cooper, J. 2008. The catalytic mechanism of an aspartic proteinase explored with neutron and X‐ray diffraction. J. Am. Chem. Soc. 130: 7235‐7237.
   Coates, L., Stoica, A.D., Hoffmann, C., Richards, J., and Cooper, R. 2010. The macromolecular neutron diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge: Enhanced optics design, high‐resolution neutron detectors and simulated diffraction. J. Appl. Cryst. 43: 570‐577.
   Comoletti, D., Grishaev, A., Whitten, A.E., Tsigelny, I., Taylor, P., and Trewhella, J. 2007. Synaptic arrangement of the neuroligin/beta‐neurexin complex revealed by X‐ray and neutron scattering. Structure 15: 693‐705.
   Copley, J.R.D. and Cook, J.C. 2003. The disk chopper spectrometer at NIST: A new instrument for quasielastic neutron scattering studies. Chem. Phys. 292: 477‐485.
   Cusack, S., Miller, A., Krijgsman, P.C.J., and Mellema, J.E. 1981. An investigation of the structure of alfalfa mosaic‐virus by small‐angle neutron‐scattering. J. Mol. Biol. 145: 525‐543.
   Debye, P. and Bueche, A. 1949. Scattering by an inhomogeneous solid. J. Appl. Phys.20: 518‐525.
   Doshi, D.A., Dattelbaum, A.M., Watkins, E.B., Brinker, C.J., Swanson, B.I., Shreve, A.P., Parikh, A.N., and Majewski, J. 2005. Neutron reflectivity study of lipid membranes assembled on ordered nanocomposite and nanoporous silica thin films. Langmuir 21: 2865‐2870.
   Doster, W., Busch, S., Gaspar, A.M., Appavou, M.S., Wuttke, J., and Scheer, H. 2010. Dynamical transition of protein‐hydration water. Phys. Rev. Lett. 104: 098101.
   Ehlers, G., Podlesnyak, A.A., Niedziela, J.L., Iverson, E.B., and Sokol, P.E. 2011. The new cold neutron chopper spectrometer at the spallation neutron source: Design and performance. Rev. Sci. Instrum. 82:085108.
   Fisher, S.Z., Kovalevsky, A.Y., Domsic, J.F., Mustyakimov, M., McKenna, R., Silverman, D.N., and Langan, P.A. 2010. Neutron structure of human carbonic anhydrase II: Implications for proton transfer. Biochemistry 49:415‐421.
   Fisher, Z., Kovalevsky, A.Y., Mustyakimov, M., Silverman, D.N., McKenna, R., and Langan, P. 2011. Neutron structure of human carbonic anhydrase II: A hydrogen‐bonded water network “switch” is observed between pH 7.8 and 10.0. Biochemistry 50:9421‐9423.
   Fragneto, G., Su, T.J., Lu, J.R., Thomas, R.K., and Rennie, A.R. 2000. Adsorption of proteins from aqueous solutions on hydrophobic surfaces studied by neutron reflection. Phys. Chem. Chem. Phys. 2:5214‐5221.
   Frick, B. and Gonzalez, M. 2001. Five years operation of the second generation backscattering spectrometer IN16—a retrospective, recent developments and plans. Physica B 301:8‐19.
   Gamble, T.R., Clauser, K.R., and Kossiakoff, A.A. 1994. The production and X‐ray structure determination of perdeuterated Staphylococcal nuclease. Biophys. Chem. 53:15‐25.
   Gardberg, A.S., Del Castillo, A.R., Weiss, K.L., Meilleur, F., Blakeley, M.P., and Myles, D.A. 2010. Unambiguous determination of H‐atom positions: Comparing results from neutron and high‐resolution X‐ray crystallography. Acta Crystallogr. D Biol. Crystallogr. 66:558‐567.
   Glatter, O. 1977. New method for evaluation of small‐angle scattering data. J. Appl. Cryst. 10:415‐421.
   Glatter, O. 1979. Interpretation of real‐space information from small‐angle scattering experiments. J. Appl. Cryst. 12:166‐175.
   Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C., and Kay, L.E. 1999. A robust and cost‐effective method for the production of Val, Leu, Ile (delta 1) methyl‐protonated 15 N‐, 13 C‐, 2 H‐labeled proteins. J. Biomol. NMR 13:369‐374.
   Guinier, A. and Fournet, G. 1955. Small‐Angle Scattering of X‐rays. Wiley, New York.
   Habash, J., Raftery, J., Nuttall, R., Price, H.J., Wilkinson, C., Kalb, A.J., and Helliwell, J.R. 2000. Direct determination of the positions of the deuterium atoms of the bound water in ‐concanavalin A by neutron Laue crystallography. Acta Crystallogr. D Biol. Crystallogr. 56:541‐550.
   Hazemann, I., Dauvergne, M.T., Blakeley, M.P., Meilleur, F., Haertlein, M., Van Dorsselaer, A., Mitschler, A., Myles, D.A., and Podjarny, A. 2005. High‐resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase. Acta Crystallogr. D Biol. Crystallogr. 61:1413‐1417.
   He, L.L., Piper, A., Meilleur, F., Myles, D.A.A., Hernandez, R., Brown, D.T., and Heller, W.T. 2010. The structure of Sindbis virus produced from vertebrate and invertebrate hosts as determined by small‐angle neutron scattering. J. Virol. 84:5270‐5276.
   He, L.L., Piper, A., Meilleur, F., Hernandez, R., Heller, W.T., and Brown, D.T. 2012. Conformational changes in Sindbis virus induced by decreased pH are revealed by small‐angle neutron scattering. J. Virol. 86:1982‐1987.
   Heller, W.T., Abusamhadneh, E., Finley, N., Rosevear, P.R., and Trewhella, J. 2002. The solution structure of a cardiac troponin C‐troponin I‐troponin T complex shows a somewhat compact troponin c interacting with an extended troponin I‐Troponin T component. Biochemistry 41:15654‐15663.
   Heller, W.T., Finley, N.L., Dong, W.J., Timmins, P., Cheung, H.C., Rosevear, P.R., and Trewhella, J. 2003a. Small‐angle neutron scattering with contrast variation reveals spatial relationships between the three subunits in the ternary cardiac troponin complex and the effects of troponin I phosphorylation. Biochemistry 42:7790‐7800.
   Heller, W.T., Krueger, J.K., and Trewhella, J. 2003b. Further insights into calmodulin‐myosin light chain kinase interaction from solution scattering and shape restoration. Biochemistry 42:10579‐10588.
   Heller, W.T., Vigil, D., Brown, S., Blumenthal, D.K., Taylor, S.S., and Trewhella, J. 2004. C Subunits binding to the protein kinase a RI alpha dimer induce a large conformational change. J. Biol. Chem. 279:19084‐19090.
   Helliwell, J.R., Habash, J., Cruickshank, D.W.J., Harding, M.M., Greenhough, T.J., Campbell, J.W., Clifton, I.J., Elder, M., Machin, P.A., Papiz, M.Z., and Zurek, S. 1989. The recording and analysis of synchrotron X‐radiation Laue diffraction photographs. J. Appl. Cryst. 22:483‐497.
   Ho, D.L., Byrnes, W.M., Ma, W.P., Shi, Y., Callaway, D.J.E., and Bu, Z.M. 2004. Structure‐specific DNA‐induced conformational changes in Taq polymerase revealed by small angle neutron scattering. J. Biol. Chem. 279:39146‐39154.
   Howard, E.I., Blakeley, M.P., Haertlein, M., Petit‐Haertlein, I., Mitschler, A., Fisher, S.J., Cousido‐Siah, A., Salvay, A.G., Popov, A., Muller‐Dieckmann, C., Petrova, T., and Podjarny, A. 2011. Neutron structure of type‐III antifreeze protein allows the reconstruction of AFP‐ice interface. J. Mol. Recogn. 24:724‐732.
   Ibel, K. and Stuhrmann, H.B. 1975. Comparison of neutron and X‐ray‐scattering of dilute myoglobin solutions. J. Mol. Biol. 93:255‐265.
   Inoue, H. and Timmins, P.A. 1985. The structure of rice dwarf virus determined by small‐angle neutron‐scattering measurements. Virology 147:214‐216.
   Jacrot, B. 1976. Study of biological structures by neutron‐scattering from solution. Rep. Progr. Phys. 39:911‐953.
   Jacrot, B., Chauvin, C., and Witz, J. 1977. Comparative neutron small‐angle scattering study of small spherical RNA viruses. Nature 266:417‐421.
   Johs, A., Shi, L., Droubay, T., Ankner, J.F., and Liang, L. 2010. Characterization of the decaheme c‐type cytochrome OmcA in solution and on hematite surfaces by small angle x‐ray scattering and neutron reflectometry. Biophys. J. 98:3035‐3043.
   Katz, J.J., Crespi, H.L., Czajka, D.M., and Finkel, A.J. 1962. Course of deuteriation and some physiological effects of deuterium in mice. Am. J. Physiol. 203:907‐913.
   Kent, M.S., Yim, H., Murton, J.K., Sasaki, D.Y., Polizzotti, B.D., Charati, M.B., Kiick, K.L., Kuzmenko, I., and Satija, S. 2008. Synthetic polypeptide adsorption to Cu‐IDA containing lipid films: A model for protein‐membrane interactions. Langmuir 24:932‐942.
   Khodadadi, S., Pawlus, S., Roh, J.H., Sakai, V.G., Mamontov, E., and Sokolov, A.P. 2008. The origin of the dynamic transition in proteins. J. Chem. Phys. 128:195106.
   Khodadadi, S., Roh, J.H., Kisliuk, A., Mamontov, E., Tyagi, M., Woodson, S.A., Briber, R.M., and Sokolov, A.P. 2010. Dynamics of biological macromolecules: Not a simple slaving by hydration water. Biophys. J. 98:1321‐1326.
   King, W.A., Stone, D.B., Timmins, P.A., Narayanan, T., von Brasch, A.A.M., Mendelson, R.A., and Curmi, P.M.G. 2005. Solution structure of the chicken skeletal muscle troponin complex via small‐angle neutron and X‐ray scattering. J. Mol. Biol. 345:797‐815.
   Kline, S.R. 2006. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Cryst. 39:895‐900.
   Kochendoerfer, G.G., Jones, D.H., Lee, S., Oblatt‐Montal, M., Opella, S.J., and Montal, M. 2004. Functional characterization and NMR spectroscopy on full‐length Vpu from HIV‐1 prepared by total chemical synthesis. J. Am. Chem. Soc. 126:2439‐2446.
   Kossiakoff, A.A. 1982. Protein dynamics investigated by the neutron diffraction‐hydrogen exchange technique. Nature 296:713‐721.
   Kozlovskaya, V., Ankner, J.F., O'Neill, H., Zhang, Q., and Kharlampieva, E. 2011. Localized entrapment of green fluorescent protein within nanostructured polymer films. Soft Matter 7:11453‐11463.
   Krueger, J.K., Olah, G.A., Rokop, S.E., Zhi, G., Stull, J.T., and Trewhella, J. 1997. Structures of calmodulin and a functional myosin light chain kinase in the activated complex: A neutron scattering study. Biochemistry 36:6017‐6023.
   Krueger, J.K., Zhi, G., Stull, J.T., and Trewhella, J. 1998. Neutron‐scattering studies reveal further details of the Ca2+/calmodulin‐dependent activation mechanism of myosin light chain kinase. Biochemistry 37:13997‐14004.
   Krueger, S., Ankner, J.F., Satija, S.K., Majkrzak, C.F., Gurley, D., and Colombini, M. 1995. Extending the angular range of neutron reflectivity measurements from planar lipid bilayers—Application to a model biological membrane. Langmuir 11:3218‐3222.
   Krueger, S., Meuse, C.W., Majkrzak, C.F., Dura, J.A., Berk, N.F., Tarek, M., and Plant, A.L. 2001. Investigation of hybrid bilayer membranes with neutron reflectometry: Probing the interactions of melittin. Langmuir 17:511‐521.
   Krueger, S., Gregurick, S.K., Zondlo, J., and Eisenstein, E. 2003. Interaction of GroEL and GroEL/GroES complexes with a nonnative subtilisin variant: A small‐angle neutron scattering study. J. Struct. Biol. 141:240‐258.
   Kruse, J., Timmins, P.A., and Witz, J. 1982. A neutron‐scattering study of the structure of compact and swollen forms of southern bean mosaic‐virus. Virology 119:42‐50.
   Langer, J.A., Engelman, D.M., and Moore, P.B. 1978. Neutron‐scattering studies of ribosome of Escherichia coli—a provisional map of locations of proteins S3, S4, S5, S7, S8 and S9 in 30‐S subunit. J. Mol. Biol. 119:463‐485.
   Laux, V., Callow, P., Svergun, D.I., Timmins, P.A., Forsyth, V.T., and Haertlein, M. 2008. Selective deuteration of tryptophan and methionine residues in maltose binding protein: A model system for neutron scattering. Eur. Biophys. J. 37:815‐822.
   Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389:251‐260.
   Maeda, M., Chatake, T., Tanaka, I., Ostermann, A., and Niimura, N. 2004. Crystallization of a large single crystal of cubic insulin for neutron protein crystallography. J. Synch. Rad. 11:41‐44.
   Mamontov, E. and Herwig, K.W. 2011. A time‐of‐flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum. 82:085109.
   Meilleur, F., Contzen, J., Myles, D.A., and Jung, C. 2004. Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101). Biochemistry 43:8744‐8753.
   Meilleur, F., Dauvergne, M.T., Schlichting, I., and Myles, D.A. 2005. Production and X‐ray crystallographic analysis of fully deuterated cytochrome P450cam. Acta Crystallogr. D Biol. Crystallogr. 61:539‐544.
   Meilleur, F., Myles, D.A., and Blakeley, M.P. 2006a. Neutron Laue macromolecular crystallography. Eur. Biophys. J. 35:611‐620.
   Meilleur, F., Snell, E.H., van der Woerd, M.J., Judge, R.A., and Myles, D.A. 2006b. A quasi‐Laue neutron crystallographic study of D‐xylose isomerase. Eur. Biophys. J. 35:601‐609.
   Meilleur, F., Weiss, K.L., and Myles, D.A. 2009. Deuterium labeling for neutron structure‐function‐dynamics analysis. Methods Mol. Biol. 544:281‐292.
   Meyer, A., Dimeo, R.M., Gehring, P.M., and Neumann, D.A. 2003. The high‐flux backscattering spectrometer at the NIST Center for Neutron Research. Rev. Sci. Instrum. 74:2759‐2777.
   Moore, P.B. 1980. Small‐angle scattering—Information‐content and error analysis. J. Appl. Cryst. 13:168‐175.
   Morgan, W.D., Kragt, A., and Feeney, J. 2000. Expression of deuterium‐isotope‐labelled protein in the yeast Pichia pastoris for NMR studies. J. Biomol. NMR 17:337‐347.
   Munshi, P., Chung, S.L., Blakeley, M.P., Weiss, K.L., Myles, D.A., and Meilleur, F. 2012. Rapid visualization of hydrogen positions in protein neutron crystallographic structures. Acta Crystallogr. D Biol. Crystallogr. 68:35‐41.
   Muona, M., Aranko, A.S., Raulinaitis, V., and Iwai, H. 2010. Segmental isotopic labeling of multi‐domain and fusion proteins by protein trans‐splicing in vivo and in vitro. Nat. Protocols 5:574‐587.
   Myles, D.A. 2006. Neutron protein crystallography: Current status and a brighter future. Curr. Opin. Struct. Biol. 16:630‐637.
   Myles, D.A.A., Dauvergne, F. Blakeley, M.P., and Meilleur, F. 2012. Neutron protein crystallography at ultra‐low (<15K) temperatures. J. Appl. Cryst. 45:686‐692.
   Nanda, H., Datta, S.A.K., Heinrich, F., Losche, M., Rein, A., Krueger, S., and Curtis, J.E. 2010. Electrostatic interactions and binding orientation of HIV‐1 matrix studied by neutron reflectivity. Biophys. J. 99:2516‐2524.
   Niimura, N. 1999. Neutrons expand the field of structural biology. Curr. Opin. Struct. Biol. 9:602‐608.
   Niimura, N., Arai, S., Kurihara, K., Chatake, T., Tanaka, I., and Bau, R. 2006. Recent results on hydrogen and hydration in biology studied by neutron macromolecular crystallography. Cell. Mol. Life Sci. 63:285‐300.
   Olah, G.A. and Trewhella, J. 1994. A model structure of the muscle protein complex 4ca2+‐center‐dot‐troponin‐C‐center‐dot‐troponin‐I derived from small‐angle scattering data—Implications for regulation. Biochemistry 33:12800‐12806.
   Olah, G.A., Rokop, S.E., Wang, C.L.A., Blechner, S.L., and Trewhella, J. 1994. Troponin‐I encompasses an extended troponin‐C in the Ca2+‐bound complex—A small‐angle X‐ray and neutron‐scattering study. Biochemistry 33:8233‐8239.
   Ollivier, J., Plazanet, M., Schober, H., and Cook, J.C. 2004. First results with the upgraded IN5 disk chopper cold time‐of‐flight spectrometer. Physica B 350:173‐177.
   Parratt, L.G. 1954. Surface studies of solids by total reflection of X‐rays. Phys. Rev. 95:359‐369.
   Pedersen, J.S. 1997. Analysis of small‐angle scattering data from colloids and polymer solutions: Modeling and least‐squares fitting. Adv. Coll. Inter. Sci. 70:171‐210.
   Perez‐Salas, U.A., Faucher, K.M., Majkrzak, C.F., Berk, N.F., Krueger, S., and Chaikof, E.L. 2003. Characterization of a biomimetic polymeric lipid bilayer by phase sensitive neutron reflectometry. Langmuir 19:7688‐7694.
   Pingali, S.V., Urban, V.S., Heller, W.T., McGaughey, J., O'Neill, H., Foston, M., Myles, D.A., Ragauskas, A., and Evans, B.R. 2010. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329‐2335.
   Ramakrishnan, V.R., Yabuki, S., Sillers, I.Y., Schindler, D.G., Engelman, D.M., and Moore, P.B. 1981. Positions of proteins S6, S11 and S15 in the 30‐S ribosomal‐subunit of Escherichia coli. J. Mol. Biol. 153:739‐760.
   Ramakrishnan, V., Capel, M., Kjeldgaard, M., Engelman, D.M., and Moore, P.B. 1984. Positions of protein‐S14, protein‐S18 and protein‐S20 in the 30‐S ribosomal‐subunit of Escherichia coli. J. Mol. Biol. 174:265‐284.
   Roe, R.‐J. 2000. Methods of X‐Ray and Neutron Scattering in Polymer Science. Oxford University Press, New York.
   Roh, J.H., Curtis, J.E., Azzam, S., Novikov, V.N., Peral, I., Chowdhuri, Z., Gregory, R.B., and Sokolov, A.P. 2006. Influence of hydration on the dynamics of lysozyme. Biophys. J. 91:2573‐2588.
   Sato, M., Satomiyamoto, Y., Kameyama, K., Ishikawa, N., Imai, M., Ito, Y., and Takagi, T. 1995. Peripherally biased distribution of antigen proteins on the recombinant yeast‐derived human hepatitis‐B virus surface‐antigen vaccine particle—Structural characteristics revealed by small‐angle neutron‐scattering using the contrast variation method. J. Biochemistry 118:1297‐1302.
   Schultz, A.J., Thiyagarajan, P., Hodges, J.P., Rehm, C., Myles, D.A.A., Langan, P., and Mesecar, A.D. 2005. Conceptual design of a macromolecular neutron diffractometer (MaNDi) for the SNS. J. Appl. Cryst. 38:964‐974.
   Sears, V.F. 1989. Neutron Optics, Oxford Series on Neutron Scattering in Condensed Matter, Vol. 3. Oxford University Press, Oxford, U.K.
   Serdyuk, I., Baranov, V., Tsalkova, T., Gulyamova, D., Pavlov, M., Spirin, A., and May, R. 1992. Structural dynamics of translating ribosomes. Biochimie 74:299‐306.
   Sheldrick, G.M. 2008. A short history of SHELX. Acta Crystallogr. A Found. Crystallogr. 64:112‐122.
   Shu, F., Ramakrishnan, V., and Schoenborn, B.P. 2000. Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proc. Natl. Acad. Sci. U.S.A. 97:3872‐3877.
   Snell, E.H., van der Woerd, M.J., Damon, M., Judge, R.A., Myles, D.A., and Meilleur, F. 2006. Optimizing crystal volume for neutron diffraction: D‐xylose isomerase. Eur. Biophys. J. 35:621‐632.
   Stehn, J. R., Goldberg, M. D., Magurno, B. A., Wiener‐Chasman, R. 1964. Neutron Cross Sections, Vol. I, (Z = 1 to 20) 2nd ed., Supp. no. 2, BNL 325, p7‐14‐1. Brookhaven National Laboratory, Upton, N.Y.
   Stidder, B., Fragneto, G., and Roser, S.J. 2005a. Effect of low amounts of cholesterol on the swelling behavior of floating bilayers. Langmuir 21:9187‐9193.
   Stidder, B., Fragneto, G., Cubitt, R., Hughes, A.V., and Roser, S.J. 2005b. Cholesterol induced suppression of large swelling of water layer in phosphocholine floating bilayers. Langmuir 21:8703‐8710.
   Stone, D.B., Timmins, P.A., Schneider, D.K., Krylova, I., Ramos, C.H.I., Reinach, F.C., and Mendelson, R.A. 1998. The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: A neutron scattering study. J. Mol. Biol. 281:689‐704.
   Sukumar, N., Langan, P., Mathews, F.S., Jones, L.H., Thiyagarajan, P., Schoenborn, B.P., and Davidson, V.L. 2005. A preliminary time‐of‐flight neutron diffraction study on amicyanin from Paracoccus denitrificans. Acta Crystallogr. D Biol. Crystallogr. 61:640‐642.
   Svergun, D.I. 1992. Determination of the regularization parameter in indirect‐transform methods using perceptual criteria. J. Appl. Cryst. 25:495‐503.
   Svergun, D.I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76:2879‐2886.
   Svergun, D.I. and Nierhaus, K.H. 2000. A map of protein‐rRNA distribution in the 70 S Escherichia coli ribosome. J. Biol. Chem. 275:14432‐14439.
   Svergun, D.I., Koch, M.H.J., Pedersen, J.S., and Serdyuk, I.N. 1994a. Structural model of the 50‐S subunit of Escherichia coli ribosomes from solution scattering. 2. Neutron‐scattering study. J. Mol. Biol. 240:78‐86.
   Svergun, D.I., Koch, M.H.J., and Serdyuk, I.N. 1994b. Structural model of the 50‐S subunit of Escherichia coli ribosomes from solution scattering. 1. X‐ray synchrotron‐radiation study. J. Mol. Biol. 240:66‐77.
   Svergun, D.I., Pedersen, J.S., Serdyuk, I.N., and Koch, M.H.J. 1994c. Solution scattering from 50s ribosomal‐subunit resolves inconsistency between electron‐microscopic models. Proc. Natl. Acad. Sci. U.S.A. 91:11826‐11830.
   Svergun, D., Barberato, C., and Koch, M.H.J. 1995. CRYSOL—A program to evaluate X‐ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28:768‐773.
   Svergun, D.I., Burkhardt, N., Pedersen, J.S., Koch, M.H.J., Volkov, V.V., Kozin, M.B., Meerwink, W., Stuhrmann, H.B., Diedrich, G., and Nierhaus, K.H. 1997a. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. 1. Invariants and validation of electron microscopy models. J. Mol. Biol. 271:588‐601.
   Svergun, D.I., Burkhardt, N., Pedersen, J.S., Koch, M.H.J., Volkov, V.V., Kozin, M.B., Meerwink, W., Stuhrmann, H.B., Diedrich, G., and Nierhaus, K.H. 1997b. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. 2. A model of the ribosome and its RNA at 3.5 nm resolution. J. Mol. Biol. 271:602‐618.
   Tehei, M., Madern, D., Franzetti, B., and Zaccai, G. 2005. Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J. Biol. Chem. 280:40974‐40979.
   Tjioe, E. and Heller, W.T. 2007. ORNL_SAS: software for calculation of small‐angle scattering intensities of proteins and protein complexes. J. Appl. Cryst. 40:782‐785.
   Teixeira, S.C., Ankner, J., Bellissent‐Funel, M.C., Bewley, R., Blakeley, M.P., Coates, L., Dahint, R., Dalgliesh, R., Dencher, N., Dhont, J., Fischer, P., Forsyth, V.T., Fragneto, G., Frick, B., Geue, T., Gilles, R., Gutberlet, T., Haertlein, M., Hauß, T., Häußler, W., Heller, W.T., Herwig, K., Holderer, O., Juranyi, F., Kampmann, R., Knott, R., Kohlbrecher, J., Kreuger, S., Langan, P., Lechner, R., Lynn, G., Majkrzak, C., May, R., Meilleur, F., Mo, Y., Mortensen, K., Myles, D.A., Natali, F., Neylon, C., Niimura, N., Ollivier, J., Ostermann, A., Peters, J., Pieper, J., Rühm, A., Schwahn, D., Shibata, K., Soper, A.K., Straessle, T., Suzuki, U.I., Tanaka, I., Tehei, M., Timmins, P., Torikai, N., Unruh, T., Urban, V., Vavrin, R., Weiss, K., and Zaccai, G. 2008. New sources and instrumentation for neutrons in biology. Chem. Phys. 345:133‐151.
   Tomanicek, S.J., Blakeley, M.P., Cooper, J., Chen, Y., Afonine, P.V., and Coates, L. 2010. Neutron diffraction studies of a class A beta‐lactamase Toho‐1 E166 A/R274 N/R276 N triple mutant. J. Mol. Biol. 396:1070‐1080.
   Tomanicek, S.J., Wang, K.K., Weiss, K.L., Blakeley, M.P., Cooper, J., Chen, Y., and Coates, L. 2011. The active site protonation states of perdeuterated Toho‐1 beta‐lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. FEBS Lett. 585:364‐368.
   Tuominen, V.U., Myles, D.A., Dauvergne, M.T., Lahti, R., Heikinheimo, P., and Goldman, A. 2004. Production and preliminary analysis of perdeuterated yeast inorganic pyrophosphatase crystals suitable for neutron diffraction. Acta Crystallogr. D. Biol. Crystallogr. 60:606‐609.
   Vacklin, H.P., Tiberg, F., Fragneto, G., and Thomas, R.K. 2005. Composition of supported model membranes determined by neutron reflection. Langmuir 21:2827‐2837.
   Volino, F. and Dianoux, A.J. 1980. Neutron incoherent‐scattering law for diffusion in a potential of spherical‐symmetry—General formalism and application to diffusion inside a sphere. Mol. Phys. 41:271‐279.
   Walther, D., Cohen, F.E., and Doniach, S. 2000. Reconstruction of low‐resolution three‐dimensional density maps from one‐dimensional small‐angle X‐ray solution scattering data for biomolecules. J. Appl. Cryst. 33:350‐363.
   Weiss, K.L., Meilleur, F., Blakeley, M.P., and Myles, D.A. 2008. Preliminary neutron crystallographic analysis of selectively CH3‐protonated deuterated rubredoxin from Pyrococcus furiosus. Acta Crystallogr. F Cryst. Struct. 64:537‐540.
   Whitten, A.E., Jacques, D.A., Hammouda, B., Hanley, T., King, G.F., Guss, J.M., Trewhella, J., and Langley, D.B. 2007. The structure of the KinA‐Sda complex suggests an allosteric mechanism of histidine kinase inhibition. J. Mol. Biol. 368:407‐420.
   Yamaguchi, S., Kamikubo, H., Kurihara, K., Kuroki, R., Niimura, N., Shimizu, N., Yamazaki, Y., and Kataoka, M. 2009. Low‐barrier hydrogen bond in photoactive yellow protein. Proc. Natl. Acad. Sci. U.S.A. 106:440‐444.
   Yokoyama, T., Mizuguchi, M., Nabeshima, Y., Kusaka, K., Yamada, T., Hosoya, T., Ohhara, T., Kurihara, K., Tomoyori, K., Tanaka, I., and Niimura, N. 2012. Hydrogen‐bond network and pH sensitivity in transthyretin: Neutron crystal structure of human transthyretin. J. Struct. Biol. 177:283‐290.
   Young, R.D., Frauenfelder, H., and Fenimore, P.W. 2011. Mossbauer effect in proteins. Phys. Rev. Lett. 107:158102.
   Zanotti, J.M., Bellissent‐Funel, M.C., and Parello, J. 1999. Hydration‐coupled dynamics in proteins studied by neutron scattering and NMR: The case of the typical EF‐hand calcium‐binding parvalbumin. Biophys. J. 76:2390‐2411.
   Zanotti, J.M., Herve, G., and Bellissent‐Funel, M.C. 2006. Picosecond dynamics of T and R forms of aspartate transcarbamylase: A neutron scattering study. Biochem. Biophys. Acta Proteins Proteom. 1764:1527‐1535.
   Zhao, J.K., Hoye, E., Boylan, S., Walsh, D.A., and Trewhella, J. 1998. Quaternary structures of a catalytic subunit‐regulatory subunit dimeric complex and the holoenzyme of the cAMP‐dependent protein kinase by neutron contrast variation. J. Biol. Chem. 273:30448‐30459.
   Zhao, J.K., Wang, J.T., Chen, D.J., Peterson, S.R., and Trewhella, J. 1999. The solution structure of the DNA double‐stranded break repair protein Ku and its complex with DNA: A neutron contrast variation study. Biochemistry 38:2152‐2159.
   Zikovsky, J., Peterson, P.F., Wang, X.P.P., Frost, M., and Hoffmann, C. 2011. CrystalPlan: An experiment‐planning tool for crystallography. J. Appl. Cryst. 44:418‐423.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library