Metalloproteases

Hideaki Nagase1

1 Imperial College School of Medicine, London
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 21.4
DOI:  10.1002/0471140864.ps2104s24
Online Posting Date:  August, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Metalloproteases (metallopeptidases) are composed of a diverse group of endopeptidases and exopeptidases. Because metalloproteases play key roles in many normal biological processes, their aberrant activities have been implicated in diseases such as arthritis, cancer, cardiovascular diseases, nephritis, disorders in the central nervous system, fibrosis, and infection, as well as others. This unit provides an overview of metalloproteases, including their classification, catalytic mechanisms, structures, substrate specificities, and common inhibitors.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Classification
  • Catalytic Mechanisms
  • Mosaic Structures of Metallopeptidases and Substrate Specificity
  • Metalloprotease Inhibitors
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Amour, A., Slocombe, P.M., Webster, A., Butler, M., Knight, S.G., Smith, B.J., Stephens, P.E., Shelley, C., Hutton, M., Knäuper, V., Docherty, A.J., and Murphy, G. 1998. TNF‐α converting enzyme (TACE) is inhibited by TIMP‐3. FEBS Lett. 435:39‐44.
   Barrett, A.J., Rawlings, N.D., and Woessner, J.F. (eds.) 1998. Handbook of Proteolytic Enzymes. Academic Press, London.
   Black, R.A. and White, J.M. 1998. ADAMs: Focus on the protease domain. Curr. Opin. Cell Biol. 10:654‐659.
   Bode, W., Gomis‐Rüth, F.‐X., and Stockler, W. 1993. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc‐binding environments (HEXXHXXGXXH and Met‐turn) and topologies and should be grouped into a common family, the “metzincins.” FEBS Lett. 331:134‐140.
   Bradshaw, R.A., Arfin, S.M., and Walker, K.W. 1998. Methionyl aminopeptidase type II. In Handbook of Proteolytic Enzymes (A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds.) pp. 1399‐1403. Academic Press, London.
   Catanese, J.J. and Kress, L.F. 1992. Isolation from opossum serum of a metalloproteinases inhibitor homologous to human α 1B‐glycoprotein. Biochemistry 31:410‐418.
   Christianson, D.W. and Lipscomb, W.N. 1989. Carboxypeptidase A. Acc. Chem. Res. 22:62‐69.
   Clendeninn, N.J. and Appelt, K. 2000. Matrix Metalloproteinase Inhibitors in Cancer Therapy. Humana Press, Totowa, N.J.
   Duong, F., Lazdunski, A., Cami, B., and Murgier, M. 1992. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: Relationship to other secretory pathways? Gene 121:47‐54.
   Fritsche, E., Paschos, A., Beisel, A.‐G., Bock, A., and Huber, R. 1999. Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli. J. Mol. Biol. 288:989‐998.
   Hooper, H.M. 1996. Zinc Metalloproteases in Health and Disease. Taytor and Francis, London.
   Hooper, N.M. 1994. Families of zinc metalloproteinases. FEBS Lett. 354:1‐6.
   Kim, G. and Kim, H.‐S. 1998. Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochem. J. 330:295‐302.
   Kim, K.S., Kim, T.U., Kim, I.J., Byun, S.M., and Shin, Y.C. 1995. Characterization of a metalloprotease inhibitor protein (SmaPI) of Serratia marcescens. Appl. Environ. Microbiol. 61:3035‐3041.
   Ksander, G.M., de Jesus, R., Yuan, A., Ghai, R.D., McMartin, C., and Bohacek, R. 1997. Meta‐substituted benzofused macrocyclic lactams as zinc metalloprotease inhibitors. J. Med. Chem. 40:506‐514.
   Lawrence, J.B., Oxvig, C., Overgaard, M.T., Sottrup‐Jensen, L., Gleich, G.J., Hays, L.G., Yates, J.R. III, and Conover, C.A. 1999. The insulin‐like growth factor (IGF)‐dependent IGF binding protein‐4 protease secreted by human fibroblasts is pregnancy‐associated plasma protein‐A. Proc. Natl. Acad. Sci. U.S.A. 96:3149‐3153.
   Letoffe, S., Delepelaire, P., and Wandersman, C. 1989. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol. Microbiol. 3:79‐86.
   Lewis, A.P. and Thomas, P.J. 1999. A novel clan of zinc metallopeptidases with possible intramembrane cleavage properties. Protein Sci. 8:439‐442.
   Matthews, B.W. 1988. Structural basis of the actions of thermolysin and related zinc peptidases. Acc. Chem. Res. 21:333‐340.
   Rawlings, N.D. and Barrett, A.J. 2000. MEROPS: The peptidase database. Nucl. Acids Res. 28:323‐325.
   Rawson, R.B., Zelenski, N.G., Nijhawan, D., Ye, J., Sakai, J., Hasan, M.T., Chang, T.Y., Brown, M.S., and Goldstein, J.L. 1997. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1:47‐57.
   Rossman, R., Maier, T., Lottspeich, F., and Böck, A. 1995. Characterization of a protease from Escherichia coli involved in hydrogenase maturation. Eur. J. Biochem. 227:545‐550.
   Ryan, C.A., Hass, G.M., and Kuhn, R.W. 1974. Purification and properties of a carboxypeptidase inhibitor from potatoes. J. Biol. Chem. 249:5495‐5499.
   Schlöndorff, J. and Blobel, C.P. 1999. Metalloprotease‐disintegrins: Modular proteins capable of promoting cell‐cell interactions and triggering signals by protein‐ectodomain shedding. J. Cell Sci. 112:3603‐3617.
   Seeram, S.S., Hiraga, K., Saji, A., Tashiro, M., and Oda, K. 1997. Identification of reactive site of a proteinaceous metalloproteinase inhibitor from Streptomyces nigrescens TK‐23 J. Biochem. 121:1088‐1095.
   Sträter, N. and Lipscomb, W.N. 1998. Leucyl aminopeptidase (animal and plant). In Handbook of Proteolytic Enzymes (A.J. Barrett, N.D. Rawlings, and J.F. Woessner, eds.) pp. 1384‐1389. Academic Press, London.
   Woessner, J.F. and Nagase, H. 2000. Matrix Metalloproteinases and TIMPs. Oxford University Press, Oxford, UK.
   Yamakawa, Y. and Omori‐Satoh, T. 1992. Primary structure of the antihemorrhagic factor in serum of the Japanese Habu: A snake venom metalloproteinase inhibitor with a double‐headed cystatin domain. J. Biochem. 112:583‐589.
   Yu, Y.T. and Kroos, L. 2000. Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J. Bacteriol. 182:3305‐3309.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library