Jean‐Bernard Denault1, Guy S. Salvesen1

1 The Burnham Institute, La Jolla
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 21.8
DOI:  10.1002/0471140864.ps2108s26
Online Posting Date:  February, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Caspases are a family of cysteine proteases with a strict specificity for aspartate residues involved in inflammatory process and programmed cell death. This overview unit provides basic information on their structure, enzymatic activity, substrate specificity, activation,inhibition and their implication in pathologies. It is intended to be an overview for investigators that are unfamiliar with this family of enzymes but it is also applicable to scientists pursuing research in this field.

PDF or HTML at Wiley Online Library

Table of Contents

  • Structure, Sequence Homology and Evolutionary Relatedness of Caspases
  • Catalytic Mechanism and Substrate Specificity
  • Activation and Inhibition of Caspases
  • Expression, Purification and Characterization of Caspases
  • Caspases and Disease State
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Baudino, T.A. and Cleveland, J.L. 2001. The Max network gone mad. Mol. Cell. Biol. 21:691‐702.
   Black, R.A., Kronheim, S.R., Merriam, J.E., March, C.J., and Hopp, T.P. 1989. A pre‐aspartate‐specific protease from human leukocytes that cleaves pro‐interleukin‐1b. J. Biol. Chem. 264:5323‐5326.
   Blanchard, H., Kodandapani, L., Mittl, P.R.E., Di Marco, S., Krebs, J.F., Wu, J.C., Tomaselli, K.J., and Grütter, M.G. 1999. The three‐dimensional structure of caspase‐8: An initiator enzyme in apoptosis. Structure 27:1125‐1133.
   Brockstedt, E., Rickers, A., Kostka, S., Laubersheimer, A., Dorken, B., Wittmann‐Liebold, B., Bommert, K., and Otto, A. 1998. Identification of apoptosis‐associated proteins in a human Burkitt lymphoma cell line: Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J. Biol. Chem. 273:28057‐28064.
   Cameron, P., Limjuco, G., Rodkey, J., Bennett, C., and Schmidt, J.A. 1985. Amino acid sequence analysis of human interleukin 1 (IL‐1): Evidence for biochemically distinct forms of IL‐1. J. Exp. Med. 162:790‐801.
   Casciola‐Rosen, L.A., Miller, D.K., Anhalt, G.J., and Rosen, A. 1994. Specific cleavage of the 70‐kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269:30757‐30760.
   Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K., and Black, R.A. 1992. Molecular cloning of the interleukin‐1b converting enzyme. Science 256:97‐100.
   Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Dataa, P., Alnemri, E.S., and Yigong Shi, Y. 2001. Structural basis of caspase‐7 inhibition by XIAP. Cell 104:769‐780.
   Chinnaiyan, A.M., O'Rourke, K., Tewari, M., and Dixit, V.M. 1995. FADD,a novel death domain–containing protein,interacts with the death domain of Fas and initiates apoptosis. Cell 81:505‐512.
   Darmon, A.J., Ley, T.J., Nicholson, D.W., and Bleackley, R.C. 1996. Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. J. Biol. Chem. 271:21709‐21712.
   Duan, H. and Dixit, V.M. 1997. RAIDD is a new “death” adaptor molecule. Nature 385:86‐89.
   Eichinger, A., Beisel, H.G., Jacob, U., Huber, R., Medrano, F.J., Banbula, A., Potempa, J., Travis, J., and Bode, W. 1999. Crystal structure of gingipain R: An Arg‐specific bacterial cysteine proteinase with a caspase‐like fold. EMBO J. 18:5453‐5462.
   Evan, G.I. and Vousden, K.H. 2001. Proliferation,cell cycle and apoptosis in cancer. Nature 411:342‐348.
   Faleiro, L., Kobayashi, R., Fearnhead, H., and Lazebnik, Y. 1997. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16:2271‐2281.
   Fanidi, A., Harrington, E.A., and Evan, G.I. 1992. Cooperative interaction between c‐myc and bcl‐2 proto‐oncogenes. Nature 359:554‐556.
   Garcia‐Calvo, M., Peterson, E.P., Leiting, B., Ruel, R., Nicholson, D.W., and Thornberry, N.A. 1998. Inhibition of human caspases by peptide‐based and macromolecular inhibitors. J. Biol. Chem. 273:32608‐32613.
   Garcia‐Calvo, M., Peterson, E.P., Rasper, D.M., Vaillancourt, J.P., Zamboni, R., Nicholson, D.W., and Thornberry, N.A. 1999. Purification and catalytic properties of human caspase family members. Cell Death Differ. 6:362‐369.
   Gu, Y., Wu, J.W., Faucheu, C., Lalanne, J.L., Diu, A., Livingston, D.J., and Su, M.S.S. 1995. Interleukin‐1‐beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J. 14:1923‐1931.
   Harbour, J.W. and Dean, D.C. 2000. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes Dev. 14:2393‐2409.
   Hofmann, K., Bucher, P., and Tschopp, J. 1997. The CARD domain: A new apoptotic signalling motif. Trends Biochem. Sci. 22:155‐156.
   Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. 1991. p53 mutations in human cancers. Science 253:49‐53.
   Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., and Harris, C.C. 1996. Somatic point mutations in the p53 gene of human tumors and cell lines: Updated compilation. Nucl. Acids Res. 24:141‐146.
   Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., and Wu, H. 2001. Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. Cell 104:781‐790.
   Janicke, R.U., Sprengart, M.L., Wati, M.R., and Porter, A.G. 1998. Caspase‐3 is required for DNA fragmentation and morphological changes. J. Biol. Chem. 273:9357‐9360.
   Kostura, M.J., Tocci, M.J., Limjuco, G., Chin, J., Cameron, P., Hillman, A.G., Chartrain, N.A., and Schmidt, J.A. 1989. Identification of a monocyte specific pre‐interleukin 1b convertase activity. Proc. Natl. Acad. Sci. U.S.A. 86:5227‐5231.
   Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., and Earnshaw, W.C. 1994. Cleavage of poly(ADP‐ribose) polymerase by a proteinase with properties like ICE. Nature 371:346‐347.
   Lippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R., Verheyen, A., Garmyn, M., Zwijsen, A., Formstecher, P., Huylebroeck, D., Vandenabeele, P., and Declercq, W. 2000. Epidermal differentiation does not involve the pro‐apoptotic executioner caspases,but is associated with caspase‐14 induction and processing. Cell Death Differ. 7:1218‐1224.
   Liu, X., Zou, H., Slaughter, C., and Wang, X. 1997. DFF,a heterodimeric protein that functions downstream of caspase‐3 to trigger DNA fragmentation during apoptosis. Cell 89:175‐184.
   Martin, S.J., Amarante‐Mendez, G.P., Shi, L., Chuang, T.‐S., Casiano, C.A., O'Brien, G.A., Fitzgerald, P., Tan, E.M., Bokoch, G.M., Greenberg, A.H., and Green, D.R. 1996. The cytotoxic cell protease granzyme B initiates apoptosis in a cell‐free system by proteolytic processing and activation of the ICE,Ced3 family protease,CPP32,via a novel two‐step mechanism. EMBO J. 15:2407‐2416.
   Meergans, T., Hildebrandt, A.K., Horak, D., Haenisch, C., and Wendel, A. 2000. The short prodomain influences caspase‐3 activation in HeLa cells. Biochem. J. 349:135‐140.
   Mittl, P.R., Di Marco, S., Krebs, J.F., Bai, X., Karanewsky, D.S., Priestle, J.P., Tomaselli, K.J., and Grutter, M.G. 1997. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl‐Asp‐Val‐Ala‐Asp fluoromethyl ketone. J. Biol. Chem. 272:6539‐6547.
   Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E., and Dixit, V.M. 1996. FLICE, a novel FADD‐homologous ICE/CED‐3‐like protease,is recruited to the CD95 (Fas/APO‐1) death‐inducing signaling complex. Cell 85:817‐827.
   Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S., and Dixit, V.M. 1998. An induced proximity model for caspase‐8 activation. J. Biol. Chem. 273:2926‐2930.
   Odake, S., Kam, C.M., Narasimhan, L., Poe, M., Blake, J.T., Krahenbuhl, O., Tschopp, J., and Powers, J.C. 1991. Human and murine cytotoxic T lymphocyte serine proteases: Subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30:2217‐2227.
   Orth, K., Chinnaiyan, A.M., Garg, M., Froelich, C.J., and Dixit, V.M. 1996. The CED‐3/ICE‐like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271:16443‐16446.
   Otto, A., Muller, E.C., Brockstedt, E., Schumann, M., Rickers, A., Bommert, K., and Wittmann‐Liebold, B. 1998. High performance two dimensional gel electrophoresis and nanoelectrospray mass spectrometry as powerful tool to study apoptosis‐associated processes in a Burkitt lymphoma cell line. J. Protein Chem. 17:564‐565.
   Quan, L.T., Tewari, M., O'Rourke, K., Dixit, V., Snipas, S.J., Poirier, G.G., Ray, C., Pickup, D.J., and Salvesen, G. 1996. Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc. Natl. Acad. Sci. U.S.A. 93:1972‐1976.
   Renatus, M., Stennicke, H.R., Scott, F.L., Liddington, R.C., and Salvesen, G.S. 2001. A novel self‐priming mechanism drives the activation of caspase 9. Submitted for publication.
   Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, S., Fesik, S.W., Liddington, R.C., and Salvesen, G.S. 2001. Structural basis for the inhibition of caspase‐3 by XIAP. Cell 104:791‐800.
   Rodriguez, J. and Lazebnik, Y. 1999. Caspase‐9 and APAF‐1 form an active holoenzyme. Genes Dev. 13:3179‐3184.
   Rotonda, J., Nicholson, D.W., Fazil, K.M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E.P., Rasper, D.M., Tuel, R., Vaillancourt, J.P., Thornberry, N.A., and Becher, J.W. 1996. The three‐dimensional structure of apopain/CPP32,a key mediator of apoptosis Nature Struct. Biol. 3:619‐625.
   Salvesen, G.S. and Dixit, V.M. 1999. Caspase activation: The induced‐proximity model. Proc. Natl. Acad. Sci. U.S.A. 96:10964‐10967.
   Sherr, C.J. 1996. Cancer cell cycles. Science 274:1672‐1677.
   Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz‐Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., Cordon‐Cardo, C., and Lowe, S.W. 2001. Inactivation of the apoptosis effector Apaf‐1 in malignant melanoma. Nature 409:207‐211.
   Stennicke, H.R. and Salvesen, G.S. 1997. Biochemical characteristics of caspases‐3,‐6,‐7, and ‐8. J. Biol. Chem. 272:25719‐25723.
   Stennicke, H.R. and Salvesen, G.S. 1999. Caspases: Preparation and characterization. Methods 17:313‐319.
   Stennicke, H.R. and Salvesen, G.S. 2000a. Caspase assays. Methods Enzymol. 322:91‐100.
   Stennicke, H.R. and Salvesen, G.S. 2000b. Caspases: Controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta. 1477:299‐306.
   Stennicke, H.R., Deveraux, Q.L., Humke, E.W., Reed, J.C., Dixit, V.M., and Salvesen, G.S. 1999. Caspase‐9 can be activated without proteolytic processing. J. Biol. Chem. 274:8359‐8362.
   Stennicke, H.R., Renatus, M., Meldal, M., and Salvesen, G.S. 2000. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1,3,6,7 and 8. Biochem. J. 350:563‐568.
   Sun, C., Cai, M., Meadows, R.P., Xu, N., Gunasekera, A.H., Herrmann, J., Wu, J.C., and Fesik, S.W. 2000. NMR structure and mutagenesis of the third bir domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275:33777‐33781.
   Thornberry, N.A. 1993. Interleukin‐1b converting enzyme. Methods Enzymol. 244:615‐632.
   Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.F., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Salley, J.P., Yamin, T.T., and Tocci, M.J. 1992. A novel heterodimeric cysteine protease is required for interleukin‐1beta processing in monocytes. Nature 356:768‐774.
   Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia‐Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272:17907‐17911.
   Van Der Werff Ten Bosch, J., Otten, J., and Thielemans, K. 2001. Autoimmune lymphoproliferative syndrome type III: An indefinite disorder. Leuk. Lymphoma 41:55‐65.
   Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammill, L.D., Herzog, L., Hugunin, M., Houy, W., Mankovich, J.A., McGuiness, L., Orlewicz, E., Paskind, M., Pratt, C.A., Reis, P., Summani, A., Terranova, M., Welch, J.P., Xiong, L., and Möller, A. 1994. Crystal structure of the cysteine protease interleukin‐1beta‐converting enzyme: A (p20/p10)2 homodimer. Cell 78:343‐352.
   Watt, W., Koeplinger, K.A., Mildner, A.M., Heinrikson, R.L., Tomasselli, G., and Watenpaugh, K.D. 1999. The atomic resolution structure of human caspase‐8,a key activator of apoptosis. Structure 27:1135‐1143.
   Wei, Y., Fox, T., Chambers, S.P., Sintchak, J., Coll, J.T., Golec, J.M., Swenson, L., Wilson, K.P., and Charifson, P.S. 2000. The structures of caspases‐1,‐3,‐7 and ‐8 reveal the basis for substrate and inhibitor selectivity. Chem. Biol. 7:423‐432.
   Wilson, K.P., Black, J.A., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A., and Livingston, D.J. 1994. Structure and mechanism of interleukin‐1 beta converting enzyme. Nature 370:270‐275.
   Yang, X., Stennicke, H.R., Wang, B., Green, D.R., Janicke, R.U., Srinivasan, A., Seth, P., Salvesen, G.S., and Froelich, C.J. 1998. Granzyme B mimics apical caspases. Description of a unified pathway for trans‐activation of executioner caspase‐3 and ‐7. J. Biol. Chem. 273:34278‐34283.
   Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.M. 1993. The C. elegans cell death gene ced‐3 encodes a protein similar to mammalian interleukin‐1b‐converting enzyme. Cell 75:641‐652.
   Zhou, Q. and Salvesen, G.S. 1997. Activation of pro‐caspase‐7 by serine proteases includes a non‐canonical specificity. Biochem. J. 324:361‐364.
   Zhou, Q., Snipas, S., Orth, K., Dixit, V.M., and Salvesen, G.S. 1997. Target protease specificity of the viral serpin CrmA: Analysis of five caspases. J. Biol. Chem. 273:7797‐7800.
   Zhou, Q., Krebs, J.F., Snipas, S.J., Price, A., Alnemri, E.S., Tomaselli, K.J., and Salvesen, G.S. 1998. Interaction of the baculovirus anti‐apoptotic protein p35 with caspases: Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37:10757‐10765.
PDF or HTML at Wiley Online Library