An Overview of Serine Proteases

Lizbeth Hedstrom1

1 Brandeis University, Waltham, Massachusetts
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 21.10
DOI:  10.1002/0471140864.ps2110s26
Online Posting Date:  February, 2002
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit summarizes the families of serine proteases and their mechanism of catalysis. Methods for assays and determining substrate specificity are briefly described. The mode of action of commonly available inhibitors is also included.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Families of Serine Proteases
  • Serine Protease Precursors
  • The Mechanism of the Serine Protease Reaction
  • Specificity of Serine Proteases
  • Assays of Serine Proteases
  • Inhibitors
  • Expression of Serine Proteases
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Baker, D., Shiau, A.K., and Agard, D.A. 1993. The role of pro regions in protein folding. Curr. Opin. Cell Biol. 5:966‐970.
   Castellino, F.J., Davidson, D.J., Roasen, E., and McLinden, J. 1993. Expression of human plasminogen cDNA in lepidopteran insect cells and analysis of asparagine‐linked glycosylation patterns of recombinant plasminogens. Methods Enzymol. 222:168‐185.
   Ding, L., Coombs, G.S., Strandberg, L., Navre, M., Corey, D.R., and Madison, E.L. 1995. Origins of the specificity of tissue‐type plasminogen activator. Proc. Natl. Acad. Sci. U.S.A. 92:7627‐7631.
   Esmon, C.T. 2000. Regulation of blood coagulation. Biochim. Biophys. Acta. 1477:349‐360.
   Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. 2000. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. U.S.A. 97:7754‐7759.
   Hedstrom, L., Graf, L., Stewart, C., Rutter, W.J., and Phillips, M.A. 1991. Modulation of enzyme specificity by site‐directed mutagenesis. Methods Enzymol. 22:671‐687.
   Hedstrom, L., Szilagyi, L., and Rutter, W.J. 1992. Converting trypsin to chymotrypsin: The role of surface loops. Science 255:1249‐1253.
   Huang, X., Knoell, C.T., Frey, G., Hazegh‐Azam, M., Tashjian, A.H.J., Hedstrom, L., Abeles, R.H., and Timasheff, S.N. 2001. Modulation of recombinant human prostate‐specific antigen: Activation by hofmeister salts and inhibition by azapeptides. Appendix: Thermodynamic interpretation of the activation by concentrated salts. Biochemistry 40:11734‐11741.
   Huber, H. and Bode, W. 1978. Structural basis for the activation and action of trypsin. Acct. Chem. Res. 11:114‐122.
   Kossiakoff, A.A. 1987. Catalytic properties of trypsin. In Biological Macromolecules and Assemblies (F. A. Jurnak and A. McPherson, eds.) pp. 369‐412. John Wiley & Sons, New York.
   Laskowski, M. and Kato, I. 1980. Protein inhibitors of proteinases. Annu. Rev. Biochem. 49:593‐626.
   Lawrence, D.A. 1997. The serpin‐proteinase complex revealed. Nat. Struct. Biol. 4:339‐340.
   Leung, D., Abbenante, G., and Fairlie, D.P. 2000. Protease inhibitors: Current status and future prospects. J. Med. Chem. 43:305‐341.
   Madison, E.L., Goldsmith, E.J., Gerard, R.D., Gething, M.J., and Sambrook, J.F. 1989. Serpin‐resistant mutants of human tissue‐type plasminogen activator. Nature 339:721‐724.
   Matthews, D.J. and Wells, J.A. 1993. Substrate phage: Selection of protease substrates by monovalent phage display. Science 260:1113‐1117.
   Perona, J.J. and Craik, C.S. 1995. Structural basis of substrate specificity in the serine proteases. Prot. Sci. 4:337‐360.
   Rano, T.A., Timkey, T., Peterson, E.P., Rotonda, J., Nicholson, D.W., Becker, J.W., Chapman, K.T., and Thornberry, N.A. 1997. A combinatorial approach for determining protease specificities: Application to interleukin‐1beta converting enzyme (ICE). Chem. Biol. 4:149‐155.
   Rawlings, N.D. and Barrett, A.J. 1994. Families of serine peptidases. Methods Enzymol. 244:19‐61.
   Remington, S.J. 1993. Serine carboxypeptidases: A new and versatile family of enzymes. Curr. Opin. Biotechnol. 4:62‐68.
   Rockwell, N.C. and Fuller, R.S. 2001. Direct measurement of acylenzyme hydrolysis demonstrates rate‐limiting deacylation in cleavage of physiological sequences by the processing protease Kex2. Biochemistry 40:3657‐3665.
   Schellenberger, V., Turck, C.W., and Rutter, W.J. 1994. Role of the S′ subsites in serine protease catalysis. Active site mapping of rat chymotrypsin, rat trypsin, alpha‐lytic protease and cercarial protease from Schistosoma mansoni. Biochemistry 33:4251‐4257.
   Silen, J.L. and Agard, D.A. 1989. The alpha‐lytic protease pro‐region does not require a physical linkage to activate the protease domain in vivo. Nature 341:462‐464.
   Silen, J.L., Frank, D., Fujishige, A., Bone, R., and Agard, D.A. 1989. Analysis of prepro‐alphalytic protease expression in Escherichiacoli reveals that the pro region is required for activity. J. Bacteriol. 171:1320‐1325.
   Smith, M.M. and Shi, L. 1995. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J. Biol. Chem. 270:6440‐6449.
   Stubbs, M.T. and Bode, W. 1995. The clot thickens: Clues provided by thrombin structure. Trends Biochem. Sci. 20:23‐28.
   Taylor, F.R., Bixler, S.A., Budman, J.I., Wen, D., Karpusas, M., Ryan, S.T., Jaworski, G.J., Safari‐Fard, A., Pollard, S., and Whitty, A.A. 1999. Induced fit activation mechanism of the exceptionally specific serine protease, complement factor D. Biochemistry 38:2849‐2859.
Internet Resources
  http://www.biochem.wustl.edu/∼protease/index.html
  Rose and Di Cera serine protease home page.
  http://merops.iapc.bbsrc.ac.uk/
  MEROPS data base.
  http://www.expasy.ch/cgi‐bin/lists?peptidas.txt
  ExPASy website.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library