Zymography of Metalloproteinases

Linda Troeberg1, Hideaki Nagase1

1 Imperial College London, London, United Kingdom
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 21.15
DOI:  10.1002/0471140864.ps2115s33
Online Posting Date:  November, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Zymography is an electrophoretic technique enabling visualization of the number and approximate size of peptidases in a sample on the basis of their hydrolysis of a protein substrate within the gel. The technique is particularly useful for analyzing the peptidase composition of complex biological samples because visualization depends directly on proteolytic activity. This unit presents a representative zymography protocol for the study of matrix metallopeptidases (MMPs).

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Zymography of Matrix Metalloproteinases Using a Gelatin or Casein Substrate
  • Alternate Protocol 1: Zymography of Matrix Metalloproteinases Using Substrate Proteins other than Gelatin
  • Alternate Protocol 2: Real‐Time Zymography
  • Alternate Protocol 3: Reverse Zymography for Study of Proteinase Inhibitors
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Zymography of Matrix Metalloproteinases Using a Gelatin or Casein Substrate

  Materials
  • Acrylamide/bisacrylamide solution (see recipe)
  • Separating gel buffer (see recipe)
  • 10× casein or gelatin substrate solution (see recipe)
  • Sucrose solution (see recipe)
  • 10% (w/v) ammonium persulfate (see recipe)
  • TEMED
  • n‐Butanol, H 2O saturated
  • Stacking gel buffer (see recipe)
  • MMP sample
  • 1 mM APMA (see recipe)
  • 2× sample loading buffer (see recipe)
  • Proteinase standards (e.g., recombinant MMP‐1, ‐2, or ‐3)
  • 1× anode and cathode reservoir buffers (see recipe)
  • Sample known to degrade gelatin or casein (e.g., recombinant culture supernatents)
  • Molecular mass standards (e.g., BioRad low‐range SDS‐PAGE standards)
  • Enzyme renaturing buffer (see recipe)
  • Developing buffer, 37°C (see recipe)
  • Staining solution (see recipe)
  • Destaining solution (see recipe)
  • Electrophoresis apparatus (e.g., ∼9‐cm × 6‐cm × 0.75‐mm minigel system) and comb
  • Gel‐loading pipet tips or Hamilton syringe
  • Constant voltage power supply
  • Sealed plastic container
  • Additional equipment and reagents for preparing and running acrylamide gels (unit 10.1)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Barrett, A.J. 1966. Chondromucoprotein‐degrading enzymes. Nature 211:1188‐1190.
  This work is supported by a Wellcome Trust grant no. 057508. The authors thank Abhilash Jain, Nidhi Sofat, and Yoshifumi Itoh for providing conditioned medium from cultured human wrist joint synovium, human chondrocytes, and TPA‐treated HT1080, respectively.
   Barrett, A.J. 1981. Alpha 2‐macroglobulin. Methods Enzymol. 80C:737‐754.
   Bury, A.F. 1981. Analysis of protein and peptide mixtures. Evaluation of three sodium dodecyl sulfate‐polyacrylamide gel electrophoresis buffer systems. J. Chromatogr. 213:491‐500.
   Feitosa, L., Gremski, W., Veiga, S.S., Elias, M.C., Graner E., Mangili, O.C., and Brentani, R.R. 1998. Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in brown spider (Loxosceles intermedia) venom. Toxicon 36:1039‐1051.
   Gogly, B., Groult, N., Hornebeck, W., Godeau, G., and Pellat, B. 1998. Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase. Anal. Biochem. 255:211‐216.
   Hattori, S., Fujisaki, H., Kiriyama, T., Yokoyama, T., and Irie, S. 2002. Real‐time zymography and reverse zymography: A method for detecting activities of matrix metallopeptidases and their inhibitors using FITC‐labeled collagen and casein as substrates. Anal. Biochem. 301:27‐34.
   Hawkes, S.P., Hongxia, L., and Taniguchi, G.T. 2001. Zymography and reverse zymography for detecting MMPs and TIMPs. In Matrix Metallopeptidase Protocols (I.M. Clark, ed.) pp. 399‐410. Humana, Totowa, N.J.
   Hummel, K.M., Penheiter, A.R., Gathman, A.C., and Lilly, W.W. 1996. Anomalous estimation of protease molecular weights using gelatin‐containing SDS‐PAGE. Anal. Biochem. 233:140‐142.
   Itoh, Y., Binner, S., and Nagase, H. 1995. Steps involved in the activation of pro‐matrix metallopeptidase 2 (progelatinase A) and tissue inhibitor of metallopeptidases (TIMP)‐2 by 4‐aminophenylmercuric acetate. Biochem. J. 308:645‐651.
   Itoh, Y., Ito, A., Iwata, K., Tanzawa, K., Mori, Y., and Nagase, H. 1998. Plasma membrane‐bound tissue inhibitor of metallopeptidases (TIMP)‐2 specifically inhibits matrix metallopeptidase 2 (gelatinase A) activated on the cell surface. J. Biol. Chem. 273:24360‐24367.
   Jain, A., Nanchahal, J., Troeberg, L., Green, P., and Brennan, F. 2001. Production of cytokines, vascular endothelial growth factor, matrix metallopeptidases, and tissue inhibitor of metallopeptidases 1 by tenosynovium demonstrates its potential for tendon destruction in rheumatoid arthritis. Arthritis Rheum. 44:1754‐1760.
   Kjeldsen, L., Johnsen, A.H., Sengeløv, H., and Borregaard, N. 1993. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 268:10425‐10432.
   Kleiner, D.E. and Stetler‐Stevenson, W.G. 1994. Quantitative zymography: Detection of picogram quantities of gelatinases. Anal. Biochem. 218:329‐329.
   Leber, T.M. and Balkwill, F.R. 1997. Zymography: A single step staining method for quantitation of proteolytic activity on substrate gels. Anal. Biochem. 249:24‐28.
   Nagase, H. 1997. Activation mechanisms of matrix metallopeptidases. Biol. Chem. 378:151‐160.
   Noha, M., Yoshida, D., Watanabe, K., and Teramoto, A. 2000. Suppression of cell invasion on human malignant glioma cell lines by a novel matrix‐metallopeptidase inhibitor SI‐27: In Vitro study. J. Neurooncol. 48:217‐223.
   Oliver, G.W., Leferson, J.D., Stetler‐Stevenson, W.G., and Kleiner, D.E. 1997. Quantitative reverse zymography: Analysis of picogram amounts of metallopeptidase inhibitors using gelatinase A and B reverse zymograms. Anal. Biochem. 244:161‐166.
   Troeberg, L., Tanaka, M., Wait, R., Shi, Y.E., Brew, K., and Nagase, H. 2002. E. coli expression of TIMP‐4 and comparative kinetic studies with TIMP‐1 and TIMP‐2: Insights into the interactions of TIMPs and matrix metallopeptidase 2 (gelatinase A). Biochem. 41:15025‐15035.
   Yasothornsrikul, S. and Hook, V.Y. 2000. Detection of proteolytic activity by fluorescent zymogram in‐gel assays. Biotechniques 28:1166‐1168.
   Yeow, K.M., Kishnani, N.S., Hutton, M., Hawkes, S.P., Murphy, G., and Edwards, D.R. 2002. Sorby's fundus dystrophy tissue inhibitor of metallopeptidases‐3 (TIMP‐3) mutants have unimpaired matrix inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol. 21:75‐88.
   Zeng, Z.S., Shu, W.P., Cohen, A.M., and Guillem, J.G. 2002. Matrix metallopeptidase‐7 expression in colorectal cancer liver metastases: Evidence for involvement of MMP‐7 activation in human cancer metastases. Clin. Cancer Res. 8:144‐148.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library