Microplate Assay For Cathepsin Detection in Viable Cells Using Derivatives of 4‐Methoxy‐β‐Naphthylamide

Anke Ruettger1, Bernd Wiederanders2

1 Orthopedical Research Unit Eisenberg, Universitätsklinikum, Friedrich‐Schiller‐Universität Jena, 2 Institute of Biochemistry I, Universitätsklinikum, Friedrich‐Schiller‐Universität Jena
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 21.21
DOI:  10.1002/0471140864.ps2121s49
Online Posting Date:  August, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes an assay for the direct and selective detection of the four cathepsins B, H, K, and L in adherently growing cells. Cells are incubated with substrates that are peptidic derivatives of 4‐methoxy‐β‐naphthylamine partially selective for each cathepsin, together with 5‐nitrosalicylaldehyde. The protease reaction is performed in microtiter plates and the fluorescent hydrolysis products are detected using a plate reader. The selectivity of detection is enhanced by parallel assays containing inhibitors that are also partially selective for each of the cathepsins. Individual cathepsin activities can then be calculated by the difference between the uninhibited and the inhibited assays. Detection of cathepsin H activity differs from the other assays in that other nonlysosomal aminopeptidases are inhibited by bestatin. The most common application of these assays is to compare directly cells treated with different substances, e.g., pharmaceutically interesting cathepsin inhibitors. Curr. Protoc. Protein Sci. 49:21.21.1‐21.21.8. © 2007 by John Wiley & Sons, Inc.

Keywords: in vivo cathepsin assay; live cells; selectivity; microplate assay

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Cells
  • 5‐nitrosalicylaldehyde solution (see recipe)
  • Substrate solutions (see reciperecipes)
  • Inhibitor solutions (see reciperecipes)
  • Phosphate‐buffered saline (PBS; see recipe), prewarmed
  • 96‐well Black/Clear Assay Plates (Optilux, BD Biosciences)
  • Multichannel pipettor
  • Microtiter plate reader with fluorescence detection (e.g., Fluor‐S Multi‐Imager from Bio‐Rad)
  • Antifade Kit (ProLong, Molecular Probes Invitrogen detection technologies, P7481), optional
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Assfalg‐Machleidt, I., Rothe, G., Klingel, S., Banati, R., Mangel, W.F., Valet, G., and Machleidt, W. 1992. Membrane permeable fluorogenic rhodamine substrates for selective determination of cathepsin L. Biol. Chem. Hoppe Seyler 373:433‐440.
   Blum, G., Mullins, S.R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M.J., Sloane, B.F., and Bogyo, M. 2005. Dynamic imaging of protease activity with fluorescently quenched activity‐based probes. Nat. Chem. Biol. 1:203‐209.
   Bromme, D., Okamoto, K., Wang, B.B., and Biroc, S. 1996. Human cathepsin O2, a matrix protein‐degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J. Biol. Chem. 271:2126‐2132.
   Dolbeare, F.A. and Smith, R.E. 1977. Flow cytometric measurement of peptidases with use of 5‐nitrosalicylaldehyde and 4‐methoxy‐beta‐naphthylamine derivatives. Clin. Chem. 23:1485‐1491.
   Dolbeare, F. and Vanderlaan, M. 1979. A fluorescent assay of proteinases in cultured mammalian cells. J. Histochem. Cytochem. 27:1493‐1495.
   Kirschke, H., Barrett, A.J., and Rawlings, A.J. 1995. Proteinases 1: Lysosomal cysteine proteinases. Protein Profile 2:1581‐1643.
   Lecaille, F., Choe, Y., Brandt, W., Li, Z., Craik, C.S., and Bromme, D. 2002. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry 41:8447‐8454.
   Loser, R., Schilling, K., Dimmig, E., and Gutschow, M. 2005. Interaction of papain‐like cysteine proteases with dipeptide‐derived nitriles. J. Med. Chem. 48:7688‐7707.
   Murata, M., Miyashita, S., Yokoo, C., Tamai, M., Hanada, K., Hatayama, K., Towatari, T., Nikawa, T., and Katunuma, N. 1991. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 280:307‐310.
   Rawlings, N.D., Morton, F.R., and Barrett, A.J. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34:D270‐272.
   Rothe, G., Klingel, S., Assfalg‐Machleidt, I., Machleidt, W., Zirkelbach, C., Banati, R.B., Mangel, W.F., and Valet, G. 1992. Flow cytometric analysis of protease activities in vital cells. Biol. Chem. Hoppe Seyler 373:547‐554.
   Ruettger, A., Mollenhauer, J., Loeser, R., Guetschow, M., and Wiederanders, B. 2006. Microplate assay for quantitative determination of cathepsin activities in viable cells using derivatives of 4‐methoxy‐β‐naphthylamide. Biotechniques 41:469‐472.
   Schwartz, W.N. and Barrett, A.J. 1980. Human cathepsin H. Biochem. J. 191:487‐497.
   Simon, J. and Duffy, M.J. 1986. Characterization of a Cathepsin B‐like enzyme from breast‐cancer. Biochem. Soc. Trans. 14:460‐460.
   Spiess, E., Bruning, A., Gack, S., Ulbricht, B., Spring, H., Trefz, G., and Ebert, W. 1994. Cathepsin B activity in human lung tumor cell lines: Ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J. Histochem. Cytochem. 42:917‐929.
   Umezawa, H., Aoyagi, T., Suda, H., Hamada, M., and Takeuchi, T. 1976. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot. (Tokyo) 29:97‐99.
   Van Noorden, C.J., Vogels, I.M., Everts, V., and Beertsen, W. 1987. Localization of cathepsin B activity in fibroblasts and chondrocytes by continuous monitoring of the formation of a final fluorescent reaction product using 5‐nitrosalicylaldehyde. Histochem. J. 19:483‐487.
PDF or HTML at Wiley Online Library