Overview of Proteome Analysis

Nadeem Ali‐Khan1, Xun Zuo1, David W. Speicher1

1 The Wistar Institute, Philadelphia
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 22.1
DOI:  10.1002/0471140864.ps2201s30
Online Posting Date:  February, 2003
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit reviews the new discipline of proteomics, which includes any large‐scale protein‐based systematic analysis of the proteome or defined sub‐proteome from a cell, tissue, or entire organism. Proteomics originated in the mid‐1990s due to two key enabling advances, availability of complete genome sequences, and mass spectrometry advances that allowed high sensitivity identifications of proteins. Proteome analyses can be broadly categorized into three types of studies: quantitative protein profile comparisons, analysis of protein‐protein interactions, and compositional analysis of simple proteomes or subproteomes such as organelles or large protein complexes. The complexity of different types of proteomes, the merits of targeted versus global proteome studies, and the advantages of alternative separation and analysis technologies are discussed.

PDF or HTML at Wiley Online Library

Table of Contents

  • What Is Proteome Analysis?
  • Proteome Complexity, Experimental Design, and Sample Preparation
  • Global and Targeted Proteomics
  • Quantitative Protein Profiling
  • Protein‐Protein Interaction Studies
  • Protein Composition Analysis
  • Supporting Technologies
  • Conclusion and Future Perspectives
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Auerbach, D., Thaminy, S., Hottiger, M.O., and Stagljar, I. 2002. The post‐genomic era of interactive proteomics: Facts and perspectives. Proteomics 2:611‐623.
   Celis, J.E., Ostergaard, M., Rasmussen, H.H., Gromov, P., Gromova, I., Varmark, H., Palsdottir, H., Magnusson, N., Andersen, I., Basse, B., Lauridsen, J.B., Ratz, G., Wolf, H., Orntoft, T.F., Celis, P., and Celis, A. 1999. A comprehensive protein resource for the study of bladder cancer: http://biobase.dk/cgi‐bin/celis. Electrophoresis 20:300‐309.
   Cordwell, S.J., Nouwens, A.S., Verrills, N.M., Basseal, D.J., and Walsh, B.J. 2000. Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two‐dimensional electrophoresis gels. Electrophoresis 21:1094‐1103.
   De Leenheer, A.P. and Thienpont, L.M. 1992. Application of isotope dilution–mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrom. Rev. 11:249‐307.
   Fields, S., and Song, O. 1989. A novel genetic system to detect protein‐protein interactions. Nature 340:245‐246.
   Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti‐Furga, G. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141‐147.
   Graves, P.R. and Haystead, T.A. 2002. Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66:39‐63.
   Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. 1999. Quantitative analysis of complex protein mixtures using isotope‐coded affinity tags. Nature Biotechnol. 17:994‐9.
   Gygi, S.P., Rist, B., and Aebersold, R. 2000. Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 11:396‐401.
   Haab, B.B., Dunham, M.J., and Brown, P.O. 2001. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2:0004.1‐0004.13.
   Harry, J.L., Wilkins, M.R., Herbert, B.R., Packer, N. H., Gooley, A.A., and Williams, K.L. 2000. Proteomics: Capacity versus utility. Electrophoresis 21:1071‐1081.
   Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., and Tyers, M. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180‐183.
   Holt, L.J., Enever, C., de Wildt, R.M., and Tomlinson, I.M. 2000. The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11:445‐449.
   Huber, L.A., Pasquali, C., Gagescu, R., Zuk, A., Gruenberg, J., and Matlin, K.S. 1996. Endosomal fractions from viral K‐ras‐transformed MDCK cells reveal transformation specific changes on two‐dimensional gel maps. Electrophoresis 17:1734‐40.
   Hufton, S.E., Moerkerk, P.T., Meulemans, E.V., de Bruine, A., Arends, J.W., and Hoogenboom, H.R. 1999. Phage display of cDNA repertoires: The pVI display system and its applications for the selection of immunogenic ligands. J. Immunol. Methods 231:39‐51.
   Jenkins, R.E. and Pennington, S.R. 2001. Arrays for protein expression profiling: Towards a viable alternative to two‐dimensional gel electrophoresis? Proteomics 1:13‐29.
   Lin, S., Lu, C.C., Chien, H.F., and Hsu, S.M. 2000. An on‐line quantitative immunoassay system based on a quartz crystal microbalance. J. Immunol. Methods 239:121‐124.
   Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., and Yates, III, J.R. 1999. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17:676‐82.
   Lizardi, P.M., Huang, X., Zhu, Z., Bray‐Ward, P., Thomas, D.C., and Ward, D.C. 1998. Mutation detection and single‐molecule counting using isothermal rolling‐circle amplification. Nature Genet. 19:225‐232.
   Lohse, P.A. and Wright, M.C. 2001. In vitro protein display in drug discovery. Curr. Opin. Drug Discov. Devel. 4:198‐204.
   Martzen, M.R., McCraith, S.M., Spinelli, S.L., Torres, F.M., Fields, S., Grayhack, E.J., and Phizicky, E.M. 1999. A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153‐1155.
   McCormack, A.L., Schieltz, D.M., Goode, B., Yang, S., Barnes, G., Drubin, D., and Yates, III, J.R. 1997. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low‐femtomole level. Anal. Chem 69:767‐776.
   Molloy, M.P. and Andrews, P.C. 2001. Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry. Anal. Chem. 73:5387‐5394.
   Molloy, M.P., Herbert, B.R., Walsh, B.J., Tyler, M.I., Traini, M., Sanchez, J.C., Hochstrasser, D.F., Williams, K.L., and Gooley, A.A. 1998. Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis. Electrophoresis 19:837‐844.
   Moody, M.D., Van Arsdell, S.W., Murphy, K.P., Orencole, S.F., and Burns, C. 2001. Array‐based ELISAs for high‐throughput analysis of human cytokines. Biotechniques. 31:186‐194.
   Munchbach, M., Quadroni, M., Miotto, G., and James, P. 2000. Quantitation and facilitated de novo sequencing of proteins by isotopic N‐terminal labeling of peptides with a fragmentation‐directing moiety. Anal. Chem 72:4047‐4057.
   Nelson, P.S., Clegg, N., Eroglu, B., Hawkins, V., Bumgarner, R., Smith, T., and Hood, L. 2000. The prostate expression database (PEDB): Status and enhancements in 2000. Nucleic Acids Res. 28:212‐213.
   Oda, Y., Huang, K., Cross, F.R., Cowburn, D., and Chait, B.T. 1999. Accurate quantitation of protein expression and site‐specific phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 96:6591‐6596.
   Oda, Y., Nagasu, T., and Chait, B.T. 2001. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol. 19:379‐382.
   Page, M.J., Amess, B., Townsend, R.R., Parekh, R., Herath, A., Brusten, L., Zvelebil, M.J., Stein, R.C., Waterfield, M.D., Davies, S.C., and O'Hare, M.J. 1999. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl. Acad. Sci. USA 96:12589‐12594.
   Pandey, A., Podtelejnikov, A.V., Blagoev, B., Bustelo, X.R., Mann, M., and Lodish, H.F. 2000. Analysis of receptor signaling pathways by mass spectrometry: Identification of vav‐2 as a substrate of the epidermal and platelet‐derived growth factor receptors. Proc. Natl. Acad. Sci. U.S.A. 97:179‐184.
   Pasa‐Tolic, L., Jensen, P. K., Anderson, G.A., Lipton, M.S., Peden, K.K., Martinovic, S., Tolic, N., Bruce, J.E., and Smith, R.D. 1999. High‐throughput proteome‐wide precision measurements of protein expression using mass spectrometry. J. Am. Chem. Soc. 121:7949‐7950.
   Patton, W.F. 2000. A thousand points of light: The application of fluorescence detection technologies to two‐dimensional gel electrophoresis and proteomics. Electrophoresis 21:1123‐1144.
   Rain, J.C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., and Legrain, P. 2001. The protein‐protein interaction map of Helicobacter pylori. Nature 409:211‐215.
   Schweitzer, B., Wiltshire, S., Lambert, J., O'Malley, S., Kukanskis, K., Zhu, Z., Kingsmore, S.F., Lizardi, P.M., and Ward, D.C. 2000. Inaugural article: Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. U.S.A 97:113‐119.
   Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., Shu, Q., Laroche, I., Zhou, Z., Tchernev, V.T., Christiansen, J., Velleca, M., and Kingsmore, S.F. 2002. Multiplexed protein profiling on microarrays by rolling‐circle amplification. Nat. Biotechnol. 20:359‐65.
   Srinivas, P.R., Srivastava, S., Hanash, S., and Wright, G.L. Jr.. 2001. Proteomics in early detection of cancer. Clin Chem. 47:1901‐11.
   Steen, H. and Mann, M. 2002. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J. Am. Soc. Mass Spectrom. 13:996‐1003.
   Su, X., Chew, F.T., and Li, S.F. 2000a. Piezoelectric quartz crystal based label‐free analysis for allergy disease. Biosens. Bioelectron. 15:629‐639.
   Su, X., Chew, F.T., and Li, S.F. 2000b. Design and application of piezoelectric quartz crystal‐based immunoassay. Anal. Sciences 16:107‐114.
   Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. 2001. Validation and development of fluorescence two‐dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377‐396.
   Unlu, M., Morgan, M.E., and Minden, J.S. 1997. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18:2071‐2077.
   Washburn, M.P., Wolters, D., and Yates, III, J.R. 2001. Large‐scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19:242‐247.
   Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M., and Yates, III, J.R. 2002. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74:1650‐1657.
   Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Hmphery‐Smith, I., Hochstrasser, D. F., and Willams, K. L. 1995. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13:19‐50.
   Wolters, D.A., Washburn, M.P., and Yates, III, J.R. 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73:5683‐5690.
   Yao, X., Freas, A., Ramirez, J., Demirev, P.A., and Fenselau, C. 2001. Proteolytic 18 O labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal. Chem. 73:2836‐2842.
   Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. 2000. Analysis of yeast protein kinases using protein chips. Nature Genet. 26:283‐289.
   Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., and Snyder, M. 2001. Global analysis of protein activities using proteome chips. Science 293:2101‐2105.
   Zozulya, S., Lioubin, M., Hill, R.J., Abram, C., and Gishizky, M.L. 1999. Mapping signal transduction pathways by phage display. Nature Biotechnol. 17:1193‐1198.
   Zuo, X. and Speicher, D.W. 2000. A method for global analysis of complex proteomes using sample prefractionation by solution isoelectrofocusing prior to two‐dimensional electrophoresis. Anal. Biochem. 284:266‐78.
   Zuo, X. and Speicher, D.W. 2002. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two‐dimensional electrophoresis. Proteomics 2:58‐68.
   Zuo, X., Echan, L., Hembach, P., Tang, H.Y., Speicher, K.D., Santoli, D., and Speicher, D.W. 2001. Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two‐dimensional gels and using one‐dimensional gels for insoluble and large proteins. Electrophoresis 22:1603‐1615.
PDF or HTML at Wiley Online Library