Characterization of Protein Content Present in Exosomes Isolated from Conditioned Media and Urine

Ankit Sinha1, Javier Alfaro1, Thomas Kislinger1

1 Princess Margaret Cancer Centre, Toronto, Ontario
Publication Name:  Current Protocols in Protein Science
Unit Number:  Unit 24.9
DOI:  10.1002/cpps.23
Online Posting Date:  February, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Cells secrete biomolecules into the extracellular space as a way of intercellular communication. Secreted proteins can act as ligands that engage specific receptors—on the same cell, nearby cells, or distant cells—and induce defined signaling pathways. Proteins and other biomolecules can also be packaged as cargo molecules within vesicles that are released to the extracellular space (termed extracellular vesicles or EVs). A subclass of such EVs, exosomes have been shown to horizontally transfer information. In recent years, exosomes have sparked tremendous interest in biological research, both for the discovery of novel biomarkers and for the identification of signaling molecules, as part of their cargo. Although multiple methods have been described for the isolation of exosomes, described here is a simple differential centrifugation approach that is well suited for the isolation of exosomes from conditioned cell culture media and urine. Mass spectrometry provides an ideal method to comprehensively analyze the protein cargo of exosomes. © 2017 by John Wiley & Sons, Inc.

Keywords: exosome isolation; proteomics; differential centrifugation; secretome

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Isolation and Proteomic Characterization of Exosomes from Serum‐Free Secretomes
  • Alternate Protocol 1: Isolation and Proteomic Characterization of Exosome from Cells Cultured in the Presence of Serum
  • Basic Protocol 2: Isolation and Proteomic Characterization of Exosomes Isolated from Expressed Prostatic Secretions in Urine (EPS‐Urine)
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation and Proteomic Characterization of Exosomes from Serum‐Free Secretomes

  Materials
  • Phosphate buffered saline (PBS), pH 7.4 ( appendix 2E)
  • Complete medium: appropriate tissue culture media containing 100 U/ml penicillin–streptomycin and 2 mM L‐glutamine
  • Secretome medium: appropriate tissue culture media (without phenol red or fetal bovine serum)
  • Denaturation buffer: 50% (v/v) 2,2,2‐trifluoroethanol in PBS, pH 7.4
  • 500 mM dithiothreitol (DTT) in water
  • 1 M iodoacetamide in water (prepared fresh)
  • 100 mM ammonium bicarbonate buffer, pH 8.0 (prepared fresh)
  • 2 M CaCl 2 in water
  • 1 μg/μl trypsin (sequencing grade) in 50 mM acetic acid; alternatively Lys‐C/trypsin mixtures (Promega, cat. no. V5071) could be used
  • Trifluoroacetic acid
  • Priming solution: 80% acetonitrile and 0.1% formic acid in water
  • Washing solution: 0.1% formic acid in water
  • Elution solution: 60% acetonitrile and 0.1% formic acid in water
  • Buffer A: 0.1% MS formic acid in MS‐grade water
  • Buffer B: 0.1% MS formic acid in MS‐grade acetonitrile
  • 15‐cm tissue culture dishes
  • 15‐ml centrifugal filters with 3 kDa MWCO (EMD Millipore)
  • 10‐ml polycarbonate ultracentrifuge tube (Beckman Coulter, cat. no. 355603)
  • Desalting tips: OMIX C18 pipette tips (Agilent, USA)
  • Heat block set at 60°C
  • Refrigerated centrifuge capable of reaching 300, 2000, and 10,000 × g (e.g., Eppendorf 5810R)
  • Ultracentrifuge capable of 120,000 × g (e.g., Beckman Coulter Type 70.1 Ti)
  • SpeedVac (Thermo Fisher Scientific)
  • Easy Spray ES803 50‐cm C18 reverse‐phase column (Thermo Fisher Scientific) or similar
  • QExactive mass spectrometer (Thermo Fisher Scientific) coupled to an EasyLC 1200 nano‐liquid chromatography system (Thermo Fisher Scientific) or similar
  • Additional reagents and equipment for determination of protein concentration (unit 3.4; Olson and Markwell, ) and microvolume spectrophotometry (unit 3.10; Desjardins et al., )

Alternate Protocol 1: Isolation and Proteomic Characterization of Exosome from Cells Cultured in the Presence of Serum

  Materials (also see protocol 1)
  • Sterile fetal bovine serum (Invitrogen)
  • 0.22‐μm vacuum filter (Gibco)

Basic Protocol 2: Isolation and Proteomic Characterization of Exosomes Isolated from Expressed Prostatic Secretions in Urine (EPS‐Urine)

  Materials (also see protocol 1)
  • EPS‐urine samples (obtained from the BioBank under an ethics approved protocol)
  • Resuspension buffer: 10 mM triethanolamine (pH 7.6), 250 mM sucrose
  • Dithiothreitol
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Alvarez, M.L., Khosroheidari, M., Kanchi Ravi, R., and DiStefano, J.K. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82:1024‐1032. doi: 10.1038/ki.2012.256.
  Clark, D.J., Fondrie, W.E., Liao, Z., Hanson, P.I., Fulton, A., Mao, L., and Yang, A.J. 2015. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal. Chem. 87:10462‐10469. doi: 10.1021/acs.analchem.5b02586.
  Cox, J. and Mann, M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat. Biotechnol. 26:1367‐1372. doi: 10.1038/nbt.1511.
  Desjardins, P., Hansen, J.B. and Allen, M. 2009. Microvolume spectrophotometric and fluorometric determination of protein concentration. Curr. Protoc. Prot. Sci. 55:3.10.1‐3.10.16. doi: 10.1002/0471140864.ps0310s55.
  Diamandis, E.P. 2010. Cancer biomarkers: Can we turn recent failures into success? J. Natl. Cancer Inst. 102:1462‐1467. doi: 10.1093/jnci/djq306.
  Domcke, S., Sinha, R., Levine, D.A., Sander, C., and Schultz, N. 2013. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4:2126. doi: 10.1038/ncomms3126.
  Drake, R.R. and Kislinger, T. 2014. The proteomics of prostate cancer exosomes. Exp. Rev. Proteomics 11:167‐177. doi: 10.1586/14789450.2014.890894.
  Holland, N.T., Smith, M.T., Eskenazi, B., and Bastaki, M. 2003. Biological sample collection and processing for molecular epidemiological studies. Mutat. Res. 543:217‐234. doi: 10.1016/S1383‐5742(02)00090‐X.
  Ince, T.A., Sousa, A.D., Jones, M.A., Harrell, J.C., Agoston, E.S., Krohn, M., Selfors, L.M., Liu, W., Chen, K., Yong, M., Buchwald, P., Wang, B., Hale, K.S., Cohick, E., Sergent, P., Witt, A., Kozhekbaeva, Z., Gao, S., Agoston, A.T., Merritt, M.A., Foster, R., Rueda, B.R., Crum, C.P., Brugge, J.S., and Mills, G.B. 2015. Characterization of twenty‐five ovarian tumour cell lines that phenocopy primary tumours. Nat. Commun. 6:7419. doi: 10.1038/ncomms8419.
  Kalra, H., Drummen, G.P., and Mathivanan, S. 2016. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int. J. Mol. Sci. 17:170. doi: 10.3390/ijms17020170.
  Kim, Y., Ignatchenko, V., Yao, C.Q., Kalatskaya, I., Nyalwidhe, J.O., Lance, R.S., Gramolini, A.O., Troyer, D.A., Stein, L.D., Boutros, P.C., Medin, J.A., Semmes, O.J., Drake, R.R., and Kislinger, T. 2012. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ‐confined versus extracapsular prostate cancer. Mol. Cell Proteomics 11:1870‐1884. doi: 10.1074/mcp.M112.017889.
  Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J.P., Primdal‐Bengtson, B., Dingli, F., Loew, D., Tkach, M., and Thery, C. 2016. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. U.S.A. 113:E968‐977. doi: 10.1073/pnas.1521230113.
  Lee, T.H., D'Asti, E., Magnus, N., Al‐Nedawi, K., Meehan, B., and Rak, J. 2011. Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular 'debris'. Semin. Immunopathol. 33:455‐467. doi: 10.1007/s00281‐011‐0250‐3.
  Liu, Y., Gu, Y., and Cao, X. 2015. The exosomes in tumor immunity. Oncoimmunology 4:e1027472. doi: 10.1080/2162402X.2015.1027472.
  Lo Cicero, A., Delevoye, C., Gilles‐Marsens, F., Loew, D., Dingli, F., Guere, C., Andre, N., Vie, K., van Niel, G., and Raposo, G. 2015. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 6:7506. doi: 10.1038/ncomms8506.
  Locke, J.A. and Black, P.C. 2016. Next generation biomarkers in prostate cancer. Front. Biosci. (Landmark Ed.) 21:328‐342. doi: 10.2741/4391.
  Lotvall, J., Hill, A.F., Hochberg, F., Buzas, E.I., Di Vizio, D., Gardiner, C., Gho, Y.S., Kurochkin, I.V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M.H., Witwer, K.W., and Thery, C. 2014. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3:26913. doi: 10.3402/jev.v3.26913.
  Lowry, M.C., Gallagher, W.M., and O'Driscoll, L. 2015. The role of exosomes in breast cancer. Clin. Chem. 61:1457‐1465. doi: 10.1373/clinchem.2015.240028.
  Luga, V., Zhang, L., Viloria‐Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M., and Wrana, J.L. 2012. Exosomes mediate stromal mobilization of autocrine Wnt‐PCP signaling in breast cancer cell migration. Cell 151:1542‐1556. doi: 10.1016/j.cell.2012.11.024.
  Melo, S.A., Sugimoto, H., O'Connell, J.T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L.T., Melo, C.A., Lucci, A., Ivan, C., Calin, G.A., and Kalluri, R. 2014. Cancer exosomes perform cell‐independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707‐721. doi: 10.1016/j.ccell.2014.09.005.
  Mengual, L., Lozano, J.J., Ingelmo‐Torres, M., Izquierdo, L., Musquera, M., Ribal, M.J., and Alcaraz, A. 2016. Using gene expression from urine sediment to diagnose prostate cancer: Development of a new multiplex mRNA urine test and validation of current biomarkers. BMC Cancer 16:76. doi: 10.1186/s12885‐016‐2127‐2.
  Muller, L., Mitsuhashi, M., Simms, P., Gooding, W.E., and Whiteside, T.L. 2016. Tumor‐derived exosomes regulate expression of immune function‐related genes in human T cell subsets. Sci. Rep. 6:20254. doi: 10.1038/srep20254.
  Nawaz, M., Camussi, G., Valadi, H., Nazarenko, I., Ekstrom, K., Wang, X., Principe, S., Shah, N., Ashraf, N.M., Fatima, F., Neder, L., and Kislinger, T. 2014. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat. Rev. Urol. 11:688‐701. doi: 10.1038/nrurol.2014.301.
  Olson, B.J. and Markwell, J. 2007. Assays for determination of protein concentration. Curr. Protoc. Protein Sci. 48:3.4.1‐3.4.29. doi: 10.1002/0471140864.ps0304s48.
  Principe, S., Hui, A.B., Bruce, J., Sinha, A., Liu, F.F., and Kislinger, T. 2013a. Tumor‐derived exosomes and microvesicles in head and neck cancer: Implications for tumor biology and biomarker discovery. Proteomics 13:1608‐1623. doi: 10.1002/pmic.201200533.
  Principe, S., Jones, E.E., Kim, Y., Sinha, A., Nyalwidhe, J.O., Brooks, J., Semmes, O.J., Troyer, D.A., Lance, R.S., Kislinger, T., and Drake, R.R. 2013b. In‐depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics 13:1667‐1671. doi: 10.1002/pmic.201200561.
  Properzi, F., Logozzi, M., and Fais, S. 2013. Exosomes: The future of biomarkers in medicine. Biomark. Med. 7:769‐778. doi: 10.2217/bmm.13.63.
  Putz, U., Howitt, J., Doan, A., Goh, C.P., Low, L.H., Silke, J., and Tan, S.S. 2012. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal 5:ra70. doi: 10.1126/scisignal.2003084.
  Raposo, G. and Stoorvogel, W. 2013. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 200:373‐383. doi: 10.1083/jcb.201211138.
  Shelke, G.V., Lasser, C., Gho, Y.S., and Lotvall, J. 2014. Importance of exosome depletion protocols to eliminate functional and RNA‐containing extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles 3. doi:10.3402/jev.v3.24783.
  Shimoda, M., Principe, S., Jackson, H.W., Luga, V., Fang, H., Molyneux, S.D., Shao, Y.W., Aiken, A., Waterhouse, P.D., Karamboulas, C., Hess, F.M., Ohtsuka, T., Okada, Y., Ailles, L., Ludwig, A., Wrana, J.L., Kislinger, T., and Khokha, R. 2014. Loss of the Timp gene family is sufficient for the acquisition of the CAF‐like cell state. Nat. Cell Biol. 16:889‐901. doi: 10.1038/ncb3021.
  Sinha, A., Ignatchenko, V., Ignatchenko, A., Mejia‐Guerrero, S., and Kislinger, T. 2014. In‐depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. Biochem. Biophys. Res. Commun. 445:694‐701. doi: 10.1016/j.bbrc.2013.12.070.
  Sokolova, V., Ludwig, A.K., Hornung, S., Rotan, O., Horn, P.A., Epple, M., and Giebel, B. 2011. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 87:146‐150. doi: 10.1016/j.colsurfb.2011.05.013.
  Tauro, B.J., Greening, D.W., Mathias, R.A., Mathivanan, S., Ji, H., and Simpson, R.J. 2013. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell‐derived organoids. Mol. Cell Proteomics 12:587‐598. doi: 10.1074/mcp.M112.021303.
  Tosoian, J.J., Ross, A.E., Sokoll, L.J., Partin, A.W., and Pavlovich, C.P. 2016. Urinary Biomarkers for Prostate Cancer. Urol. Clin. North Am. 43:17‐38. doi: 10.1016/j.ucl.2015.08.003.
  Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O., and Hendrix, A. 2014. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3. doi:10.3402/jev.v3.24858.
  Zhang, H., Lin, Q., Ponnusamy, S., Kothandaraman, N., Lim, T.K., Zhao, C., Kit, H.S., Arijit, B., Rauff, M., Hew, C.L., Chung, M.C., Joshi, S.B., and Choolani, M. 2007. Differential recovery of membrane proteins after extraction by aqueous methanol and trifluoroethanol. Proteomics 7:1654‐1663. doi: 10.1002/pmic.200600579.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library