Authentication and Banking of Human Pluripotent Stem Cells

Richard Josephson1, Jonathan Auerbach1

1 GlobalStem, Rockville, Maryland
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 1C.9
DOI:  10.1002/9780470151808.sc01c09s11
Online Posting Date:  December, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Pluripotent human stem cell lines from embryos or reprogrammed adult cells are not all alike. Cell lines differ widely in their propensity for differentiation, their chromosomal integrity and epigenetic state, immunological profiles, and their availability for research. It is important that all pluripotent cell lines be protected from loss by being properly banked and authenticated, which will also protect current experimental data by enabling its future reproducibility. This unit considers basic guidelines for banking and authentication of pluripotent stem cells that should be easily implementable within any laboratory. Cell Banking is the disciplined preservation of a cell stock in the originally obtained state, as well as stocks representing the baseline state for experimental efforts. Each of these stocks must be authenticated appropriately. Authentication of pluripotent lines verifies five properties: the unique identity of the line, its sterility or freedom from contaminating microorganisms and pathogens, the integrity and stability of its genome, its expression of typical markers of the stem cell phenotype, and its pluripotency upon differentiation. This unit lists and compares several assays to verify each of these stem cell line properties. Thanks to recent advances in molecular biology and the availability of state‐of‐the‐art assays from service providers, the time and material costs of banking and authentication are not excessive for the typical research laboratory. Curr. Protoc. Stem Cell Biol. 11:1C.9.1‐1C.9.11. © 2009 by John Wiley & Sons, Inc.

Keywords: authentication; cell banking; pluripotent stem cell; working cell bank; master cell bank; identity; sterility; stability; undifferentiated phenotype; pluripotency; GMP; GTP

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Identity
  • Stability
  • Sterility
  • Phenotype
  • Pluripotency
  • Cell Line Banking
  • Clinical Considerations
  • Conclusion
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Allegrucci, C., Wu, Y.Z., Thurston, A., Denning, C.N., Priddle, H., Mummery, C.L., Ward‐van Oostwaard, D., Andrews, P.W., Stojkovic, M., Smith, N., Parkin, T., Jones, M.E., Warren, G., Yu, L., Brena, R.M., Plass, C., and Young, L.E. 2007. Restriction landmark genome scanning identifies culture‐induced DNA methylation instability in the human embryonic stem cell epigenome. Hum. Mol. Genet. 16:1253‐1268.
   Andrews, P.W., Matin, M.M., Bahrami, A.R., Damjanov, I., Gokhale, P., and Draper, J.S. 2005. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: Opposite sides of the same coin. Biochem. Soc. Trans. 33:1526‐1530.
   Blank, W.A., Henderson, K.S., and White, L.A. 2004. Virus PCR assay panels: An alternative to the mouse antibody production test. Lab. Anim. 33:26‐32.
   Buzzard, J.J., Gough, N.M., Crook, J.M., and Colman, A. 2004. Karyotype of human ES cells during extended culture. Nat. Biotechnol. 22:381‐382.
   Bravo, N.R. and Gottesman, M. 2007. Notice Regarding Authentication of Cultured Cell Lines (Notice Number: NOT‐OD‐08‐017). National Institutes of Health, Bethesda, Md.
   Carpenter, M.K., Frey‐Vasconcells, J., and Rao, M.S. 2009. Developing safe therapies from human pluripotent stem cells. Nat. Biotechnol. 27:606‐613.
   Chang, K.H., Nelson, A.M., Fields, P.A., Hesson, J.L., Ulyanova, T., Cao, H., Nakamoto, B., Ware, C.B., and Papayannopoulou, T. 2008. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp. Cell Res. 314:2930‐2940.
   Coe, B.P., Ylstra, B., Carvalho, B., Meijer, G.A., Macaulay, C., and Lam, W.L. 2007. Resolving the resolution of array CGH. Genomics 89:647‐653.
   Crook, J.M., Peura, T.T., Kravets, L., Bosman, A.G., Buzzard, J.J., Horne, R., Hentze, H., Dunn, N.R., Zweigerdt, R., Chua, F., Upshall, A., and Colman, A. 2007. The generation of six clinical‐grade human embryonic stem cell lines. Cell Stem Cell 1:490‐494.
   Donahue, S.L., Lin, Q., Cao, S., and Ruley, H.E. 2006. Carcinogens induce genome‐wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc. Natl. Acad. Sci. U.S.A. 103:11642‐11646.
   Draper, J.S., Smith, K., Gokhale, P., Moore, H.D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T.P., Thomson, J.A., and Andrews, P.W. 2004. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22:53‐34.
   Draper, J.S., Séguin, C.A., and Andrews, P.W. 2007. Phenotypic analysis of human embryonic stem cells. In Human Embryonic Stem Cells: The Practical Handbook (S. Sullivan, C.A. Cowan, and K. Eggan, eds.) pp. 93‐106. Wiley, Chichester, U.K.
   Enver, T., Soneji, S., Joshi, C., Brown, J., Iborra, F., Orntoft, T., Thykjaer, T., Maltby, E., Smith, K., Dawud, R.A., Jones, M., Matin, M., Gokhale, P., Draper, J., and Andrews, P.W. 2005. Cellular differentiation hierarchies in normal and culture‐adapted human embryonic stem cells. Hum. Mol. Genet. 14:3129‐3140.
   Gardina, P.J., Lo, K.C., Lee, W., Cowell, J.K., and Turpaz, Y. 2008. Ploidy status and copy number aberrations in primary glioblastomas defined by integrated analysis of allelic ratios, signal ratios and loss of heterozygosity using 500K SNP Mapping Arrays. BMC Genomics 9:489.
   Imreh, M.P., Gertow, K., Cedervall, J., Unger, C., Holmberg, K., Szöke, K., Csöregh, L., Fried, G., Dilber, S., Blennow, E., and Ahrlund‐Richter, L. 2006. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J. Cell. Biochem. 99:508‐516.
   Josephson, R., Ording, C.J., Liu, Y., Shin, S., Lakshmipathy, U., Toumadje, A., Love, B., Chesnut, J.D., Andrews, P.W., Rao, M.S., and Auerbach, J.M. 2007. Qualification of embryonal carcinoma 2102Ep as a reference for human embryonic stem cell research. Stem Cells 25:437‐446.
   Kashyap, V., Rezende, N.C., Scotland, K.B., Shaffer, S.M., Persson, J.L., Gudas, L.J., and Mongan, N.P. 2009. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4 and SOX2 pluripotency transcription factors with Polycomb Repressive Complexes and Stem Cell micro‐RNAs. Stem Cells Dev. 18:1093‐1108
   Langdon, J.A., Lamont, J.M., Scott, D.K., Dyer, S., Prebble, E., Bown, N., Grundy, R.G., Ellison, D.W., and Clifford, S.C. 2006. Combined genome‐wide allelotyping and copy number analysis identify frequent genetic losses without copy number reduction in medulloblastoma. Genes Chromosomes Cancer 45:47‐60.
   Laslett, A.L., Grimmond, S., Gardiner, B., Stamp, L., Lin, A., Hawes, S.M., Wormald, S., Nikolic‐Paterson, D., Haylock, D., and Pera, M.F. 2007. Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC Dev. Biol. 7:12.
   Looijenga, L.H. and Oosterhuis, J.W. 1999. Pathogenesis of testicular germ cell tumours. Rev. Reprod. 4:90‐100.
   Maitra, A., Arking, D.E., Shivapurkar, N., Ikeda, M., Stastny, V., Kassauei, K., Sui, G., Cutler, D.J., Liu, Y., Brimble, S.N., Noaksson, K., Hyllner, J., Schulz, T.C., Zeng, X., Freed, W.J., Crook, J., Abraham, S., Colman, A., Sartipy, P., Matsui, S., Carpenter, M., Gazdar, A.F., Rao, M., and Chakravarti, A. 2005. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37:1099‐1103.
   Meisner, L.F., Finger, J.M., Salguero, M.L., and Johnson, J.A. 2008. Karyotype Instability and Cell Line Authentication in Embryonic Stem Cell Cultures. Poster presented at the 6th Annual Meeting of the International Society for Stem Cell Research, Philadelphia.
   Mitalipova, M.M., Rao, R.R., Hoyer, D.M., Johnson, J.A., Meisner, L.F., Jones, K.L., Dalton, S., and Stice, S.L. 2005. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23:19‐20.
   Nelson‐Rees, W.A., Daniels, D.W., and Flandermeyer, R.R. 1981. Cross‐contamination of cells in culture. Science 212:446‐452.
   Osafune, K., Caron, L., Borowiak, M., Martinez, R.J., Fitz‐Gerald, C.S., Sato, Y., Cowan, C.A., Chien, K.R., and Melton, D.A. 2008. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26:313‐315.
   Qu, C.K. and Feng, G.S. 1998. Shp‐2 has a positive regulatory role in ES cell differentiation and proliferation. Oncogene 17:433‐439.
   Solinas‐Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Döhner, H., Cremer, T., and Lichter, P. 1997. Matrix‐based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399‐407.
   Stacey, G. 2004. First Report from the UK Stem Cell Bank. National Institute for Biological Standards and Control.
   Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., Kim, V.N., and Kim, K.S. 2004. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270:488‐498.
   Tang, F., Hajkova, P., Barton, S.C., Lao, K., and Surani, M.A. 2006. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 34:e9.
   Teh, M.T., Blaydon, D., Chaplin, T., Foot, N.J., Skoulakis, S., Raghavan, M., Harwood, C.A., Proby, C.M., Philpott, M.P., Young, B.D., and Kelsell, D.P. 2005. Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res. 65:8597‐8603.
   Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M.S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T.J., Lipshutz, R., Chee, M., and Lander, E.S. 1998. Large‐scale identification, mapping, and genotyping of single‐nucleotide polymorphisms in the human genome. Science 280:1077‐1082.
   Werbowetski‐Ogilvie, T.E., Bossé, M., Stewart, M., Schnerch, A., Ramos‐Mejia, V., Rouleau, A., Wynder, T., Smith, M.J., Dingwall, S., Carter, T., Williams, C., Harris, C., Dolling, J., Wynder, C., Boreham, D., and Bhatia, M. 2009. Characterization of human embryonic stem cells with features of neoplastic progression. Nat. Biotechnol. 27:91‐97.
PDF or HTML at Wiley Online Library