Isolation of Stem Cells and Progenitors from Mouse Epidermis

Lana Kostic1, Egor Sedov1, Despina Soteriou1, Yahav Yosefzon1, Yaron Fuchs1

1 Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 1C.20
DOI:  10.1002/cpsc.26
Online Posting Date:  May, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The epidermis consists of several distinct compartments including the interfollicular epidermis (IFE), sweat glands, sebaceous glands (SGs), and the hair follicle (HF). While the IFE and SGs are in a constant state of self‐renewal, the HF cycles between phases of growth, destruction, and rest. The hair follicle stem cells (HFSCs) that fuel this perpetual cycle have been well described and are located in a niche termed the bulge. These bulge SCs express markers such as CD34 and Keratin 15 (K15), enabling the isolation of these cells. Here, we describe a powerful method for isolating HFSCs and epidermal progenitors from mouse skin utilizing fluorescence activated cell‐sorting (FACS). Upon isolation, cells can be expanded and utilized in various in vivo and in vitro models aimed at studying the function of these unique cells. © 2017 by John Wiley & Sons, Inc.

Keywords: cell sorting; epidermis; FACS; hair follicle; progenitors; skin; stem cells

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Isolation of Hair Follicles, Stem Cells, and Keratinocytes from Adult Mouse Epidermis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation of Hair Follicles, Stem Cells, and Keratinocytes from Adult Mouse Epidermis

  Materials
  • Isoflurane
  • Mice (50 to 80 days old; C57BL/6)
  • 70% ethanol
  • PBS without Ca2+ and Mg2+
  • 0.25% trypsin/EDTA
  • Staining buffer (see recipe)
  • DAPI
  • Integrin β1 antibody
  • Integrin α6 antibody
  • Sca‐1 antibody
  • CD34 antibody
  • Chelated fetal bovine serum (see recipe)
  • Anesthesia machine with induction box
  • CO 2 chamber (for euthanasia)
  • Electric shaver
  • Dissecting pad
  • Scissors
  • Pins
  • Blunt scalpel
  • Dissection forceps (flat and curved)
  • Culture dishes
  • Electric pipet filler
  • 50‐ml Falcon tubes
  • 70‐μm cell strainers
  • 40‐μm cell strainers
  • Centrifuge
  • FACS tubes
  • FACS tubes with cell strainer caps
  • Aluminum foil
  • Additional reagents and equipment for euthanizing mice (Donovan & Brown, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science Supplement, 119, 391–393. doi: 10.1242/jcs.02793
  Blanpain, C., & Fuchs, E. (2006). Epidermal stem cells of the skin. Annual Review of Cell and Developmental Biology, 22, 339–373. doi: 10.1146/annurev.cellbio.22.010305.104357
  Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self‐renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118, 635–648. doi: 10.1016/j.cell.2004.08.012
  Chen, T., Heller, E., Beronja, S., Oshimori, N., Stokes, N., & Fuchs, E. (2012). An RNA interference screen uncovers a new molecule in stem cell self‐renewal and long‐term regeneration. Nature, 485, 104–108. doi: 10.1038/nature10940
  Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label‐retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337. doi: 10.1016/0092‐8674(90)90696‐C
  Davey, H. M., & Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single‐cell analyses. Microbiology Reviews, 60, 641–696.
  Donovan, J. & Brown, P. (2006). Euthanasia. Current Protocols in Immunology, 73, 1.8.1–1.8.4. doi: 10.1002/0471142735.im0108s73
  Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445, 834–842. doi: 10.1038/nature05659
  Fuchs, E. (2009). The tortoise and the hair: Slow‐cycling cells in the stem cell race. Cell, 137, 811–819. doi: 10.1016/j.cell.2009.05.002
  Fuchs, Y., Brown, S., Gorenc, T., Rodriguez, J., Fuchs, E., & Steller, H. (2013). Sept4/ARTS regulates stem cell apoptosis and skin regeneration. Science, 341, 286–289. doi: 10.1126/science.1233029
  Fuchs, Y., & Steller, H. (2015). Live to die another way: Modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology, 16, 329–344. doi: 10.1038/nrm3999
  Garcin, C. L., Ansell, D. M., Headon, D. J., Paus, R., & Hardman, M. J. (2016). Hair follicle bulge stem cells appear dispensable for the acute phase of wound re‐epithelialisation. Stem Cells, 34, 1377–1385. doi: 10.1002/stem.2289
  Goldstein, J., & Horsley, V. (2012). Home sweet home: Skin stem cell niches. Cellular and Molecular Life Sciences, 69, 2573–2582. doi: 10.1007/s00018‐012‐0943‐3
  Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H., & Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell, 132, 299–310. doi: 10.1016/j.cell.2007.11.047
  Horsley, V., O'Carroll, D., Tooze, R., Ohinata, Y., Saitou, M., Obukhanych, T., … Fuchs, E. (2006). Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell, 126, 597–609. doi: 10.1016/j.cell.2006.06.048
  Hsu, Y. C., Pasolli, H. A., & Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell, 144, 92–105. doi: 10.1016/j.cell.2010.11.049
  Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R. J., & Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 11, 1351–1354. doi: 10.1038/nm1328
  Jaks, V., Barker, N., Kasper, M., van Es, J. H., Snippert, H. J., Clevers, H., & Toftgard, R. (2008). Lgr5 marks cycling, yet long‐lived, hair follicle stem cells. Nature Genetics, 40, 1291–1299. doi: 10.1038/ng.239
  Jensen, K. B., Collins, C. A., Nascimento, E., Tan, D. W., Frye, M., Itami, S., & Watt, F. M. (2009). Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell, 4, 427–439. doi: 10.1016/j.stem.2009.04.014
  Jensen, U. B., Yan, X., Triel, C., Woo, S. H., Christensen, R., & Owens, D. M. (2008). A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. Journal of Cell Science, 121, 609–617. doi: 10.1242/jcs.025502
  Kolarsick, P. A. J., Kolarsick, M. A., & Goodwin, C. (2011). Anatomy and physiology of the skin. Journal of the Dermatology Nurses’ Association, 3, 366. doi: 10.1097/JDN.0b013e3182274a98
  Lu, C. P., Polak, L., Rocha, A. S., Pasolli, H. A., Chen, S. C., Sharma, N., … Fuchs, E. (2012). Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell, 150, 136–150. doi: 10.1016/j.cell.2012.04.045
  Morris, R. J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., … Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22, 411–417. doi: 10.1038/nbt950
  Nijhof, J. G., Braun, K. M., Giangreco, A., van Pelt, C., Kawamoto, H., Boyd, R. L., … van Ewijk, W. (2006). The cell‐surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development, 133, 3027–3037. doi: 10.1242/dev.02443
  Rompolas, P., & Greco, V. (2014). Stem cell dynamics in the hair follicle niche. Seminars in Cell & Developmental Biology, 25–26, 34–42. doi: 10.1016/j.semcdb.2013.12.005
  Snippert, H. J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J. H., Barker, N., … Clevers, H. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 327, 1385–1389. doi: 10.1126/science.1184733
  Soteriou, D., Kostic, L., Sedov, E., Yosefzon, Y., Steller, H., & Fuchs, Y. (2016). Isolating hair follicle stem cells and epidermal keratinocytes from dorsal mouse skin. Journal of Visualized Experiments. 110, e53931. doi: 10.3791/53931
  Stojadinovic, O., Ito, M., & Tomic‐Canic, M. (2011). Hair cycling and wound healing: To pluck or not to pluck? The Journal of Investigative Dermatology, 131, 292–294. doi: 10.1038/jid.2010.334
  Tadeu, A. M., & Horsley, V. (2014). Epithelial stem cells in adult skin. Current Topics in Developmental Biology, 107, 109–131. doi: 10.1016/B978‐0‐12‐416022‐4.00004‐4
  Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine, 5, a023267. doi: 10.1101/cshperspect.a023267
  Trempus, C. S., Morris, R. J., Bortner, C. D., Cotsarelis, G., Faircloth, R. S., Reece, J. M., & Tennant, R. W. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. The Journal of Investigative Dermatology, 120, 501–511. doi: 10.1046/j.1523‐1747.2003.12088.x
  Vidal, V. P., Chaboissier, M. C., Lutzkendorf, S., Cotsarelis, G., Mill, P., Hui, C. C., … Schedl, A. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Current Biology, 15, 1340–1351. doi: 10.1016/j.cub.2005.06.064
  Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J., & Tumbar, T. (2009). Distinct self‐renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell, 5, 267–278. doi: 10.1016/j.stem.2009.06.004
  Zouboulis, C. C., Adjaye, J., Akamatsu, H., Moe‐Behrens, G., & Niemann, C. (2008). Human skin stem cells and the ageing process. Experimental Gerontology, 43, 986–997. doi: 10.1016/j.exger.2008.09.001
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library