Isolation and Expansion of Mesenchymal Stem Cells from Human Conjunctival Tissue

Samad Nadri1, Shahin Yazdani2

1 Medical Biotechnology and Medical Nanotechnology Department, Faculty of Medicine, Zanjan University of Medical Science, Zanjan, 2 Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 1F.14
DOI:  10.1002/9780470151808.sc01f14s33
Online Posting Date:  May, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells (MSCs) from conjunctiva stromal tissue, with applications to stem cell biology and regenerative medicine. This protocol is based on an explant culture protocol for the adhesion and migration of MSCs from tissue biopsy in primary culture and expansion of the MSC population by passaging cells on the surface of plastic culture dishes. Conjunctiva mesenchymal stem cells (CJMSCs) are generally isolated from small biopsies of human conjunctival tissue. Epithelial sheets are carefully loosened and removed by enzyme treatment after 18 hr and placed in fresh medium supplemented with growth factors. When the cells migrating from tissue segments in primary cultures become nearly confluent, the culture is treated with trypsin. A purified population of CJMSCs that retain proliferation and differentiation potential for many passages can be obtained 2 weeks after the initiation of culture. © 2015 by John Wiley & Sons, Inc.

Keywords: isolation; conjunctiva; mesenchymal stem cells; human

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Conjunctival biopsy
  • Dulbecco's Modified Eagle Medium (DMEM) with 2 mM l‐glutamine and without ribonucleosides and ribonucleotides (Life Technologies, cat. no. 12100‐046)
  • 100× penicillin‐streptomycin (Sigma, cat. no. P4333)
  • Amphotericin B (Sigma, cat. no. A2942)
  • Gentamicin (Sigma, cat.no.G1397)
  • Supplemented hormonal epithelial medium (SHEM; see recipe)
  • Dispase II (Sigma, cat. no. D4693)
  • Sorbitol
  • Dulbecco's modified Eagle's medium (DMEM)/F‐12 1:1 mixture (DMEM/F‐12 medium; Life Technologies, cat. no. 12500‐062)
  • Knockout Serum Replacement (Life Technologies, cat. no. 10828‐028)
  • Basic‐FGF (Peprotech, cat. no. 450‐33)
  • 5 mg/ml insulin (Sigma, cat. no. 19278)
  • 10 ng/ml human LIF (Millipore, cat. no. 1005)
  • Complete DMEM medium with 15% FBS (see recipe)
  • Phosphate‐buffered saline (PBS; prepare from PBS powder, Life Technologies, cat. no. 00‐3000)
  • 0.025% (w/v) trypsin (Life Technologies, cat. no. 27250‐018)
  • Stereomicroscope
  • Sterile blades
  • 6‐well plate
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Allansmith, M.R., Baird, R.S., and Greiner, J.V. 1981. Density of goblet cells in vernal conjunctivitis and contact lens‐associated giant papillary conjunctivitis. Arch. Ophthalmol. 99:884‐885.
  Bui, K.M., Garcia‐Gonzalez, J.M., Patel, S.S., Lin, A.Y., Edward, D.P., and Goldstein, D.A. 2014. Directed conjunctival biopsy and impact of histologic sectioning methodology on the diagnosis of ocular sarcoidosis. J. Ophthal. Inflamm. Infect. 4:8.
  Chastain, S.R., Kundu, A.K., Dhar, S., Calvert, J.W., and Putnam, A.J. 2006. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 78:73‐85.
  Danmark, S., Finne‐Wistrand, A., Albertsson, A.C., Patarroyo, M., and Mustafa, K. 2012. Integrin‐mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces. Biomed. Mater. 7:035011.
  De Bari, C., Dell'Accio, F., Tylzanowski, P., and Luyten, F.P. 2011 Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928‐1942.
  De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., Dragoo, J.L., Ashjian, P., Thomas, B., Benhaim, P., Chen, I., Fraser, J., and Hedrick, M.H. 2003. Comparison of multi‐lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101‐109.
  Digirolamo, C.M., Stokes, D., Colter, D., Phinney, D.G., Class, R., and Prockop, D.J. 1999. Propagation and senescence of human marrow stromal cells in culture: a simple colony‐forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 107:275‐281.
  Jankowski, R.J., Deasy, B.M., and Huard, J. 2002. Muscle‐derived stem cells. Gene Ther. 9:642‐647.
  Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, LW., Robey, PG., and Shi, S. 2003. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. U.S.A. 100:5807‐5812.
  Muraglia, A., Cancedda, R., and Quarto, R. 2000. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 113:1161‐1166.
  Nadri, S. and Soleimani, M. 2007. Comparative analysis of mesenchymal stromal cells from murine bone marrow and amniotic fluid. Cytotherapy 9:729‐737.
  Nadri, S., Soleimani, M., Hosseni, R.H., Massumi, M., Atashi, A., and Izadpanah, R. 2007. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51:723‐729.
  Nadri, S., Soleimani, M., Kiani, J., Atashi, A., and Izadpanah, R. 2008a. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation 76:223‐231.
  Nadri, S., Soleimani, M., Mobarra, Z., and Amini, S. 2008b. Expression of dopamine‐associated genes on conjunctiva stromal‐derived human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 377:423‐428.
  Nadri, S., Kazemi, B., Eslaminejad, M.B., Yazdani, S., and Soleimani, M. 2013a. High yield of cells committed to the photoreceptor‐like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol. Biol. Rep. 40:3883‐3890.
  Nadri, S., Yazdani, S., Arefian, E., Gohari, Z., Eslaminejad, M.B., Kazemi, B., and Soleimani, M. 2013b. Mesenchymal stem cells from trabecular meshwork become photoreceptor‐like cells on amniotic membrane. Neurosci. Lett. 541:43‐48.
  Nakahara, H., Bruder S.P., Haynesworth, S.E., Holecek, J.J., Baber, M.A., Goldberg, V.M., and Caplan, A.I. 1990. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11:181‐188.
  Noort, W.A., Kruisselbrink, A.B., in't Anker, P.S., Kruger, M., van Bezooijen, R.L., de Paus, R.A., Heemskerk, M.H., Lowik, C.W., Falkenburg, J.H., Willemze, R., and Fibbe, W.E. 2002. Mesenchymal stem cells promote engraftment of human umbilical cord blood‐derived CD34(+) cells in NOD/SCID mice. Exp. Hematol. 30:870‐878.
  Noth, U., Osyczka, A.M., Tuli, R., Hickok, N.J., Danielson, K.G., and Tuan, R.S. 2002. Multilineage mesenchymal differentiation potential of human trabecular bone‐derived cells. J. Orthopaedic Res. 20:1060‐1069.
  Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M.M., and Davies, J.E. 2005. Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells 23:220‐229.
  Soleimani, M. and Nadri, S. 2009. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4:102‐106.
  Soleimani, M., Nadri, S., Salehi, M., Sobhani, A., and Hajarizadeh, A. 2008. Characterization of fibroblast‐like cells from the rat olfactory bulb. Int. J. Dev. Biol. 52:979‐984.
  Tanioka, H., Kawasaki, S., Yamasaki, K., Ang, L.P., Koizumi, N., Nakamura, T., Yokoi, N., Komuro, A., Inatomi, T., and Kinoshita, S. 2006. Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest. Ophthalmol. Vis. Sci. 47:3820‐3827.
  Zuk, PA., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13:4279‐4295.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library