Isolation of Ready‐to‐Use Adipose‐Derived Stem Cell (ASC) Pellet for Clinical Applications and a Comparative Overview of Alternate Methods for ASC Isolation

Edoardo Raposio1, Nicolò Bertozzi2

1 Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, 2 Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 1F.17
DOI:  10.1002/cpsc.29
Online Posting Date:  May, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Current literature does not offer a standardized method to isolate adipose‐derived stem cells (ASCs) for clinical applications and hence clinical studies using ASCs often show inconsistent results. Most of these studies borrow laboratory or benchside‐derived protocols, which are complex, time consuming, and involve the use of chemical, animal‐derived reagents. In this unit we describe a relatively simple and faster isolation protocol that allows collection of a ready‐to‐use ASC pellet for clinical application. All steps are performed in a closed circuit in order to guarantee maximum process sterility. Once the adipose tissue is harvested by means of a standard liposuction procedure, it undergoes a first centrifugation in order to remove the oil and serous fractions. Then ASCs are released by enzymatic digestion from the surrounding connective tissue scaffold. Finally a double series of washing and centrifugation allows one to obtain the ASC pellet alone. We usually graft this ASC pellet onto the skin edge and to the bottom of chronic skin ulcers as ASCs proved to be effective in promoting wound healing processes. Moreover, an increasing number of clinical studies are currently ongoing to test their potential in every medical field, from orthopedics to cardiology, oncology, autoimmune diseases, and tissue engineering. © 2017 by John Wiley & Sons, Inc.

Keywords: adipose‐derived stem cell; mesenchymal stem cells; regenerative surgery; wound healing

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Human adipose tissue
  • Medication (for sutures; e. g., Cosmopor Steril, Hartmann)
  • 2% lidocaine (Monico Spa)
  • Klein solution, 4°C (see recipe)
  • Collagenase digestion solution (see recipe)
  • Saline solution (Frenius Kabi)
  • Scalpel No. 11 (Benefis S.R.L.)
  • Tumescent cannula
  • 50‐ml Lipokit/Adivive FPU syringes (Medikhan, cat. no. TP‐101)
  • Piston screwdriver (Medikhan, cat. no. TP‐402)
  • Tumescent hose (Medikhan, cat. no. SP‐107)
  • Syringe air hose (Medikhan, cat. no. TP‐105)
  • Three‐way valve (Medikhan, cat. no. TP‐112)
  • Lipokit control foot switch (Medikhan, cat. no. TP‐301)
  • Syringes connector II (Medikhan, cat. no. TP‐107)
  • Syringe weight adapter (Medikhan, cat. no. TP‐111)
  • Lipokit 416D (Medikhan)
  • Suction cannula
  • 50‐ml Lipokit/Adivive FPU TP‐102 syringes (Medikhan, cat. no. TP‐102)
  • 50‐ml Luer lock syringe
  • FPU bucket (Medikhan)
  • Celtibator (Medikhan)
  • Luer lock adapter II (Medikhan, cat. no. TP‐109)
  • Luer lock adapter (Medikhan, cat. no. TP‐113)
  • 10‐ml Luer lock syringe
  • Needle
  • 4/0 monofilament stitches
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Al Battah, F., De Kock, J., Ramboer, E., Heymans, A., Vanhaecke, T., Rogiers, V., & Snykers, S. (2011). Evaluation of the multipotent character of human adipose tissue‐derived stem cells isolated by Ficoll gradient centrifugation and red blood cell lysis treatment. Toxicology in Vitro, 25, 1224–1230. doi: 10.1016/j.tiv.2011.05.024
  Banyard, D. A., Salibian, A. A., Widgerow, A. D., & Evans, G. R. (2015). Implications for human adipose‐derived stem cells in plastic surgery. Journal of Cellular and Molecular Medicine, 19, 21–30. doi: 10.1111/jcmm.12425
  Baptista, L. S., Amaral, R. F. J. C., Carias, R. B. V., Aniceto, M., Silva, C. C., & Borojevic, R. (2009). An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples. Cytotherapy, 11, 706–715. doi: 10.3109/14653240902981144
  Bianchi, F., Maioli, M., Leonardi, E., Olivi, E., Pasquinelli, G., Valente, S., & Ventura, C. (2013). A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte‐like elements by mild mechanical forces from human lipoaspirates. Cell Transplantation, 22, 2063–2077. doi: 10.3727/096368912X657855
  Caruana, G., Bertozzi, N., Boschi, E., Grieco, M. P., Grignaffini, E., & Raposio, E. (2015). Role of adipose‐derived stem cells in chronic cutaneous wound healing. Annali Italiani Di Chirurgia, 86, 1–4.
  Chung, M. T., Zimmermann, A. S., & Paik, K. J. (2013). Isolation of human adiposo‐derived stromal cells using laser‐assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cell Translational Medicine, 2, 808–817. doi: 10.5966/sctm.2012‐0183
  European Commission. (2011). Good manufacturing practice (GMP) guidelines. European Union. EudraLex, Volume 4.‐4/index_en.htm
  Fadel, L., Viana, B. R., Feitosa, M. L. T., Ercolin, A. C. M., Roballo, K. C. S., Casals, J. B., … Ambrósio, C. E. (2011). Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cirurgica Brasileira, 26, 267–273. doi: 10.1590/S0102‐86502011000400004
  Fisher, C., Grahovac, T. L., Schafer, M. E., Shippert, R. D., Marra, K. G., & Rubin, J. P. (2013). Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plastic and Reconstructive Surgery, 132, 351–361. doi: 10.1097/PRS.0b013e3182958796
  Francis, M. P., Sachs, P. C., Elmore, L. W., & Holt, S. E. (2010). Isolating adipose‐derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis, 6, 11–14. doi: 10.4161/org.6.1.10019
  Gimble, J., & Guilak, F. (2003). Adipose‐derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369. doi: 10.1080/14653240310003026
  Kokai, L. E., Marra, K., & Rubin, J. P. (2014). Adipose stem cells: Biology and clinical applications for tissue repair and regeneration. Translational Research, 163, 399–408. doi: 10.1016/j.trsl.2013.11.009
  Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Review, 7, 269–291. doi: 10.1007/s12015‐010‐9193‐7
  Meza‐Zepeda, L. A., Noer, A., Dahl, J. A., Micci, F., Myklebost, O., & Collas, P. (2008). High‐resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12, 553–563. doi: 10.1111/j.1582‐4934.2007.00146.x
  Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: Adipose‐derived stem cells as a novel tool for future regenerative medicine. Stem Cell, 30, 804–810. doi: 10.1002/stem.1076
  Raposio, E., Bertozzi, N., Bonomini, S., Bernuzzi, G., Formentini, A., Grignaffini, E., & Grieco, M. P. (2016a). Adipose‐derived stem cells added to platelet‐rich plasma for chronic skin ulcer therapy. Wounds, 28, 126–131.
  Raposio, E., Caruana, G., Petrella, M., Bonomini, S., & Grieco, M. P. (2016b). A standardized method of isolating adipose‐derived stem cells for clinical applications. Annals of Plastic Surgery, 76(1), 124–126. doi: 10.1097/SAP.0000000000000609
  Raposio, E., Caruana, G., Petrella, M., Bonomini, S., & Libondi, G. (2014). A novel and effective strategy for the isolation of adipose‐derived stem cells: Minimally manipulated adipose‐derived stem cells for more rapid and safe stem cell therapy. Plastic and Reconstructive Surgery, 133, 1406–1409. doi: 10.1097/PRS.0000000000000170
  Salibian, A. A., Widgerow, A. D., Abrouk, M., & Evans, G. R. (2013). Stem cells in plastic surgery: A review of current clinical and translational applications. Archives of Plastic Surgery, 40(6), 666–675. doi: 10.5999/aps.2013.40.6.666
  U.S. Food and Drug Administration. (2013). CFR ‐ Code of Federal Regulations Title 21, Part 1271: Human cells, tissues and cellular and tissue‐based products. U.S. Food & Drug Administration.
  Yoshimura, K., Shiguera, T., Matsumoto, D., Sato, T., Takaki, Y., Aiba‐Kojima, E., … Gonda, K. (2006). Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of Cellular Physiology, 208, 64–76. doi: 10.1002/jcp.20636
  Zuk, P. (2013). Adipose‐derived stem cells in tissue regeneration: A review. ISRN Stem Cell, 2013, Article ID 713959. doi: org/10.1155/2013/713959
  Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell‐based therapies. Tissue Engineering, 7, 211–228. doi: 10.1089/107632701300062859
PDF or HTML at Wiley Online Library