Small‐Molecule‐Directed Hepatocyte‐Like Cell Differentiation of Human Pluripotent Stem Cells

Santosh Mathapati1, Richard Siller1, Agata A.R. Impellizzeri2, Max Lycke3, Karianne Vegheim4, Runar Almaas4, Gareth J. Sullivan5

1 Norwegian Center for Stem Cell Research, Oslo, 2 Department of Medical Genetics, Oslo University Hospital, Ullevål, Oslo, 3 Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 4 Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, 5 Institute of Immunology, Oslo University Hospital, Oslo
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 1G.6
DOI:  10.1002/cpsc.13
Online Posting Date:  August, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Hepatocyte‐like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small‐molecule‐driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small‐molecule‐derived DE is then differentiated to hepatoblast‐like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N‐hexanoic‐Tyr, Ile‐6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc.

Keywords: definitive endoderm; hepatocyte; hESCs; hiPSCs; small molecules

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Small‐Molecule Differentiation of hPSCs Into HLCs Using Single‐Cell Seeding
  • Alternate Protocol 1: Small‐Molecule Differentiation of hPSCs into HLCs Using Standard Cell Passaging
  • Support Protocol 1: Preparation of Geltrex‐Coated Tissue Culture Dishes
  • Support Protocol 2: Feeder‐Independent Culture and Maintenance of hPSCs on Geltrex
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Small‐Molecule Differentiation of hPSCs Into HLCs Using Single‐Cell Seeding

  Materials
  • Essential 8 Medium (see recipe), room temperature
  • 10 mM ROCK inhibitor Y‐27632 (1000×; see recipe)
  • Human pluripotent stem cells (hPSCs), maintained and expanded on Geltrex‐coated six‐well plates (see protocol 4)
  • Dulbecco's phosphate‐buffered saline, calcium and magnesium free (DPBS−/−; Life Technologies, cat. no. 14190)
  • Accutase (Life Technologies, A1115‐01)
  • 0.4% trypan blue solution (Life Technologies, 15250‐061)
  • 3 mM CHIR99021 (see recipe)
  • RPMI/B‐27 medium (see recipe)
  • SR‐DMSO differentiation medium (see recipe)
  • L‐15 differentiation medium (see recipe)
  • Sterile biosafety cabinet
  • 37°C, 5% CO 2 incubator
  • Phase‐contrast microscope
  • 40‐µm Corning cell strainer (Sigma‐Aldrich, CLS431750)
  • 50‐ml conical tubes (VWR, 734‐0453)
  • Geltrex‐coated six‐well plates (see protocol 3)
  • Additional reagents and equipment for determining viability by trypan blue exclusion

Alternate Protocol 1: Small‐Molecule Differentiation of hPSCs into HLCs Using Standard Cell Passaging

  Materials
  • Geltrex stock solution (see recipe)
  • AdvDMEM/F12 medium: 1:1 Advanced Dulbecco's modified Eagle medium/Ham's F‐12 (Life Technologies, cat. no. 12634)
  • 50‐ml conical tube (VWR, 734‐0453)
  • Six‐well tissue culture plates (VWR, 7340991)

Support Protocol 1: Preparation of Geltrex‐Coated Tissue Culture Dishes

  Additional Materials (also see protocol 1Basic Protocol)
  • Geltrex‐coated six‐well plates (see protocol 3)
  • Frozen human pluripotent stem cells (hPSCs; in liquid nitrogen): e.g., hESC H1 cells (WiCell) or Sendai virus–derived hiPSC line AG05836B clone #27 (Coriell Institute, AG05836)
  • Dry ice
  • 70% (v/v) ethanol
  • 0.5 mM EDTA (see recipe)
  • Sterile 5‐ml serological pipets
  • 15‐ml conical tubes (VWR, 734‐0451)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Agarwal, S., Holton, K.L., and Lanza, R. 2008. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26:1117‐1127. doi: 10.1634/stemcells.2007‐1102.
  Borowiak, M., Maehr, R., Chen, S., Chen, A.E., Tang, W., Fox, J.L., Schreiber, S.L., and Melton, D.A. 2009. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348‐358. doi: 10.1016/j.stem.2009.01.014.
  Brolen, G., Sivertsson, L., Bjorquist, P., Eriksson, G., Ek, M., Semb, H., Johansson, I., Andersson, T.B., Ingelman‐Sundberg, M., and Heins, N. 2010. Hepatocyte‐like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. Chin. J. Biotechnol. 145:284‐294. doi: 10.1016/j.jbiotec.2009.11.007.
  Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., Meng, S., Chen, Y., Zhou, R., Song, X., Guo, Y., Ding, M., and Deng, H. 2007. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229‐1239. doi: 10.1002/hep.21582.
  D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. 2005. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23:1534‐1541. doi: 10.1038/nbt1163.
  Hannan, N.R.F., Segeritz, C.‐P., Touboul, T., and Vallier, L. 2013. Production of hepatocyte‐like cells from human pluripotent stem cells. Nat. Protoc. 8:430‐437. doi: 10.1038/nprot.2012.153.
  Hay, D.C., Fletcher, J., Payne, C., Terrace, J.D., Gallagher, R.C., Snoeys, J., Black, J.R., Wojtacha, D., Samuel, K., Hannoun, Z., Pryde, A., Filippi, C., Currie, I.S., Forbes, S.J., Ross, J.A., Newsome, P.N., and Iredale, J.P. 2008. Highly efficient differentiation of hESCs to functional hepatic endoderm requires activin A and Wnt3a signaling. Proc. Natl. Acad. Sci. U.S.A. 105:12301‐12306. doi: 10.1073/pnas.0806522105.
  Kia, R., Sison, R.L., Heslop, J., Kitteringham, N.R., Hanley, N., Mills, J.S., Park, B.K., and Goldring, C.E. 2013. Stem cell‐derived hepatocytes as a predictive model for drug‐induced liver injury: Are we there yet? Br. J. Clin. Pharmacol. 75:885‐896. doi: 10.1111/j.1365‐2125.2012.04360.x.
  Liu, H., Ye, Z., Kim, Y., Sharkis, S., and Jang, Y.Y. 2010. Generation of endoderm‐derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51:1810‐1819. doi: 10.1002/hep.23626.
  McCoy, A.T., Benoist, C.C., Wright, J.W., Kawas, L.H., Bule‐Ghogare, J.M., Zhu, M., Appleyard, S.M., Wayman, G.A., and Harding, J.W. 2013. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J. Pharmacol. Exp. Ther. 344:141‐154. doi: 10.1124/jpet.112.199497.
  Roelandt, P., Obeid, S., Paeshuyse, J., Vanhove, J., Van Lommel, A., Nahmias, Y., Nevens, F., Neyts, J., and Verfaillie, C.M. 2012. Human pluripotent stem cell‐derived hepatocytes support complete replication of hepatitis C virus. J. Hepatol. 57:246‐251. doi: 10.1016/j.jhep.2012.03.030.
  Siller, R., Greenhough, S., Naumovska, E., and Sullivan, G.J. 2015. Small‐molecule‐driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports 4:939‐952. doi: 10.1016/j.stemcr.2015.04.001.
  Si‐Tayeb, K., Noto, F.K., Nagaoka, M., Li, J., Battle, M.A., Duris, C., North, P.E., Dalton, S., and Duncan, S.A. 2010. Highly efficient generation of human hepatocyte‐like cells from induced pluripotent stem cells. Hepatology 51:297‐305. doi: 10.1002/hep.23354.
  Sullivan, G.J., Hay, D.C., Park, I.‐H., Fletcher, J., Hannoun, Z., Payne, C.M., Dalgetty, D., Black, J.R., Ross, J.A., Samuel, K., Wang, G., Daley, G.Q., Lee, J.‐H., Church, G.M., Forbes, S.J., Iredale, J.P., and Wilmut, I. 2010. Generation of Functional Human Hepatic Endoderm from Human iPS cells. Hepatology 51:329‐335. doi: 10.1002/hep.23335.
  Tahamtani, Y., Azarnia, M., Farrokhi, A., Sharifi‐Zarchi, A., Aghdami, N., and Baharvand, H. 2013. Treatment of human embryonic stem cells with different combinations of priming and inducing factors toward definitive endoderm. Stem Cells Dev. 22:1419‐1432. doi: 10.1089/scd.2012.0453.
  Touboul, T., Hannan, N.R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., Mainot, S., Strick‐Marchand, H., Pedersen, R., Di Santo, J., Weber, A., and Vallier, L. 2010. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51:1754‐1765. doi: 10.1002/hep.23506.
  Wells, J.M. and Melton, D.A. 1999. Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol. 15:393‐410. doi: 10.1146/annurev.cellbio.15.1.393.
  Yamada, T., Yoshikawa, M., Kanda, S., Kato, Y., Nakajima, Y., Ishizaka, S., and Tsunoda, Y. 2002. In vitro differentiation of embryonic stem cells into hepatocyte‐like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146‐154. doi: 10.1634/stemcells.20‐2‐146.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library