Time‐Lapse Live Imaging of Stem Cells in Drosophila Testis

Jun Cheng1, Alan J. Hunt1

1 University of Michigan, Ann Arbor, Michigan
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 2E.2
DOI:  10.1002/9780470151808.sc02e02s11
Online Posting Date:  November, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes a protocol for time‐lapse live‐imaging of stem cells in Drosophila testis. Testis tips are dissected from Drosophila, sliced, and transferred to glass‐bottom chambers where the stem cells residing in their native microenvironment can be monitored in real time. This protocol, facilitated with various fluorescence‐labeled markers, allows dynamic cellular processes in stem cells to be characterized throughout the cell cycle. Curr. Protoc. Stem Cell Biol. 11:2E.2.1‐2E.2.8. © 2009 by John Wiley & Sons, Inc.

Keywords: Drosophila gonad; stem cell; tissue culture; time‐lapse live imaging; epifluorescence microscopy

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Time‐Lapse Live Imaging of Drosophila Testes
  • Support Protocol 1: Dissecting and Tissue‐Culturing Drosophila Testes
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Time‐Lapse Live Imaging of Drosophila Testes

  • Culture of Drosophila testes tips in petri dishes ( protocol 2)
  • A high‐quality inverted microscope with epifluorescence capability (e.g., Zeiss Axiovert 200)
  • 3‐axis computer‐controlled microscope stage (e.g., Madcity Labs)
  • Automated shutter in the epifluorescence light path (e.g., Uniblitz)
  • Plan‐NEOFLUAR 40× objective with NA = 0.75 or AchroPlan 63× objective with NA = 0.8
  • A highly sensitive CCD camera [e.g., Hamamatsu Electron multiplier (EM) CCD camera]
  • Computer with software for controlling shutter, specimen stage, and image acquisition (e.g., Metamorph or ImageJ)
NOTE: 40× NA = 0.75 and 63× NA = 0.8 objectives provide the necessary depth of field while maintaining sufficient resolution and epifluorescence intensity.NOTE: To prevent any photo‐bleaching and potential photodamage to the testis tissue, exposure time is minimized. To achieve this goal, a highly sensitive CCD camera and a fast‐response shutter in the epifluorescence light pathway are necessary. Moreover, software control of the shutter and CCD camera is required to synchronize the shutter open/close with the timing of the image acquisition.

Support Protocol 1: Dissecting and Tissue‐Culturing Drosophila Testes

  • 70% ethanol
  • Drosophila culture medium (DCM; see recipe)
  • Drosophila male flies
  • Regenerated cellulose membrane (Spectrum Lab)
  • Carbon dioxide flowbed (Genesee Scientific)
  • Stereomicroscope (Leica)
  • Standard dissecting equipment including:
    • Forceps (Dumont #5)
    • Scalpel (Feather #15)
    • Scissors
  • 35‐mm glass‐bottom Petri dish with 20‐mm microwell (MatTek)
  • Parafilm
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Al‐Hajj, M., Wicha, M.S., Benito‐Hernandez, A., Morrison, S.J., and Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100:3983‐3988.
   Brinster, R.L. 2002. Germline stem cell transplantation and transgenesis. Science 296:2174‐2176.
   Brunet, A. and Rando, T.A. 2007. Ageing: From stem to stern. Nature 449:288‐291.
   Cheng, J., Turkel, N., Hemati, N., Fuller, M.T., Hunt, A.J., and Yamashita, Y.M. 2008. Centrosome misorientation reduces stem cell division during ageing. Nature 456:599‐604.
   Clarke, M.F. and Fuller, M. 2006. Stem cells and cancer: Two faces of eve. Cell 124:1111‐1115.
   Clevers, H. 2005. Stem cells, asymmetric division and cancer. Nat. Genet. 37:1027‐1028.
   Fuchs, E., Tumbar, T., and Guasch, G. 2004. Socializing with the neighbors: stem cells and their niche. Cell 116:769‐778.
   Fuller, M.T. and Spradling, A.C. 2007. Male and female Drosophila germline stem cells: Two versions of immortality. Science 316:402‐404.
   Greenspan, R.J. 2004. Fly Pushing: The Theory and Practice of Drosophila Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
   Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H., Joslyn, G., Stevens, J., Spirio, L., Robertson, M., Sargeant, L., Krapcho, K., Wolff, E., Burt, R., Hughes, J.P., Warrington, J., McPherson, J., Wasmuth, J., Le Paslier, D., Abderrahim, H., Cohen, D., Leppert, M., and White, R. 1991. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589‐600.
   Kiger, A.A., White‐Cooper, H., and Fuller, M.T. 2000. Somatic support cells restrict germline stem cell self‐renewal and promote differentiation. Nature 407:750‐754.
   Kiger, A.A., Jones, D.L., Schulz, C., Rogers, M.B., and Fuller, M.T. 2001. Stem cell self‐renewal specified by JAK‐STAT activation in response to a support cell cue. Science 294:2542‐2545.
   Kirkwood, T.B. 2005. Understanding the odd science of aging. Cell 120:437‐447.
   Leatherman, J.L. and Dinardo, S. 2008. Zfh‐1 controls somatic stem cell self‐renewal in the Drosophila testis and nonautonomously influences germline stem cell self‐renewal. Cell Stem Cell 3:44‐54.
   Lin, H. 2002. The stem‐cell niche theory: Lessons from flies. Nat. Rev. Genet. 3:931‐940.
   Morrison, S.J. and Kimble, J. 2006. Asymmetric and symmetric stem‐cell divisions in development and cancer. Nature 441:1068‐1074.
   Morrison, S.J., Shah, N.M., and Anderson, D.J. 1997. Regulatory mechanisms in stem cell biology. Cell 88:287‐298.
   Pece, S., Serresi, M., Santolini, E., Capra, M., Hulleman, E., Galimberti, V., Zurrida, S., Maisonneuve, P., Viale, G., and Di Fiore, P.P. 2004. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167:215‐221.
   Rando, T.A. 2006. Stem cells, ageing and the quest for immortality. Nature 441:1080‐1086.
   Rusan, N.M. and Peifer, M. 2007. A role for a novel centrosome cycle in asymmetric cell division. J. Cell Biol. 177:13‐20.
   Roberts, D.B. 1998. Drosophila: A Practical Approach. IRL Press at Oxford University Press, New York.
   Schulz, C., Wood, C.G., Jones, D.L., Tazuke, S.I., and Fuller, M.T. 2002. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 129:4523‐4534.
   Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. 2004. Identification of human brain tumour initiating cells. Nature 432:396‐401.
   Spradling, A., Drummond‐Barbosa, D., and Kai, T. 2001. Stem cells find their niche. Nature 414:98‐104.
   Tran, J., Brenner, T.J., and DiNardo, S. 2000. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 407:754‐757.
   Tulina, N. and Matunis, E. 2001. Control of stem cell self‐renewal in Drosophila spermatogenesis by JAK‐STAT signaling. Science 294:2546‐2549.
   Van Zant, G. and Liang, Y. 2003. The role of stem cells in aging. Exp. Hematol. 31:659‐672.
   Watt, F.M. and Hogan, B.L. 2000. Out of Eden: stem cells and their niches. Science 287:1427‐1430.
PDF or HTML at Wiley Online Library