Regional Cell Specific RNA Expression Profiling of FACS Isolated Drosophila Intestinal Cell Populations

Devanjali Dutta1, Nicolas Buchon2, Jinyi Xiang1, Bruce A. Edgar1

1 DKFZ‐ZMBH Alliance, University of Heidelberg, Heidelberg, 2 Department of Entomology, Cornell University, Ithaca, New York
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 2F.2
DOI:  10.1002/9780470151808.sc02f02s34
Online Posting Date:  August, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The adult Drosophila midgut is built of five distinct cell types, including stem cells, enteroblasts, enterocytes, enteroendocrine cells, and visceral muscles, and is divided into five major regions (R1 to R5), which are morphologically and functionally distinct from each other. This unit describes a protocol for the isolation of Drosophila intestinal cell populations for the purpose of cell type–specific transcriptome profiling from the five different regions. A method to select a cell type of interest labeled with green or yellow fluorescent protein (GFP, YFP) by making use of the GAL4‐UAS bipartite system and fluorescent‐activated cell sorting (FACS) is presented. Total RNA is isolated from the sorted cells of each region, and linear RNA amplification is used to obtain sufficient amounts of high‐quality RNA for analysis by microarray, RT‐PCR, or RNA sequencing. This method will be useful for quantitative transcriptome comparison across intestinal cell types in the different regions under normal and various experimental conditions. © 2015 by John Wiley & Sons, Inc.

Keywords: Drosophila intestinal stem cells; fluorescent‐activated cell sorting (FACS); cell type–specific RNA isolation; transcriptome profiling/RNASeq; enterocyte

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation and Purification of Drosophila Intestinal Cells by Fluorescent‐Activated Cell Sorting (FACS)
  • Basic Protocol 2: RNA Isolation and Amplification
  • Basic Protocol 3: Immunofluorescence Staining of Sorted Stem Cells
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation and Purification of Drosophila Intestinal Cells by Fluorescent‐Activated Cell Sorting (FACS)

  Materials
  • Transgenic adult fly Gal4 lines driving GFP or YFP expression: esg‐Gal4 (ISCs +EBs), Dl‐Gal4 (ISCs), Su(H)‐Gal4 (EBs), Myo1A‐Gal4 (ECs), How‐Gal4 (visceral muscle) and Rab3‐YFP or Prosv1‐Gal4 (EEs) and UAS‐mcd8‐GFP/UAS‐nls‐GFP
  • 10 × PBS‐DEPC (see recipe)
  • RNaseZap (Ambion) or 70% ethanol
  • Elastase (see recipe) or collagenase type IV (see recipe)
  • 1 mg/ml propidium iodide
  • 10% bleach
  • DEPC‐treated water (see recipe)
  • Wild‐type control wIII8 flies
  • Dissection dishes
  • Dissecting tools: scissors, fine forceps
  • Dissecting microscope
  • 1.5‐ml microcentrifuge tubes
  • 27°C heating block with shaking
  • Refrigerated microcentrifuge
  • 25‐ and 70‐μm filter units (BD Biosciences)
  • FACSAria II cell sorter (Becton Dickinson)
  • FACS tubes with filter tops (BD Biosciences)
  • BD FACSDiva v6.1.1 or similar software

Basic Protocol 2: RNA Isolation and Amplification

  Materials
  • Sorted cells (see protocol 1)
  • Arcturus PicoPure RNA isolation kit (Applied Biosystems)
  • 70% RNase‐free ethanol
  • Arcturus RiboAmp HS PLUS RNA amplification kit (Applied Biosystems)
  • SuperScript III reverse transcriptase (Invitrogen, cat. no. 18080‐44)
  • 1.5‐ml microcentrifuge tubes
  • Parafilm
  • 42°C water bath
  • Refrigerated microcentrifuge
  • Thermal cycler
  • Qubit 2.0 fluorometer (Invitrogen)

Basic Protocol 3: Immunofluorescence Staining of Sorted Stem Cells

  Materials
  • Sorted cells (see protocol 1)
  • Schneider's medium (Prom°Cell)
  • Fetal bovine serum (FBS)
  • 16% w/v formaldehyde (Alfa Aesar)
  • 0.15% PBST (see recipe)
  • 5% NGS in PBST (see recipe)
  • Antibodies: mouse monoclonal anti‐Delta (1:100), rabbit polyclonal anti‐GFP (1:1000) (Invitrogen)
  • 0.1% DAPI
  • Vectashield mounting medium (Vector)
  • 1.5‐ml microcentrifuge tubes
  • Refrigerated microcentrifuge
  • Positively charged slides
  • Petri plates
  • Coverslips
  • Microscope
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Amcheslavsky, A., Ito, N., Jiang, J., and Ip, Y.T. 2011. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol.193:695‐710.
  Berger, C., Harzer, H., Burkard, T.R., Steinmann, J., van der Horst, S., Laurenson, A.S., Novachkov, M., Reichert, H., and Knoblich, J.A. 2012. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self‐renewal. Cell Rep. 2:407‐418.
  Brand, A.H. and Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401‐415.
  Buchon, N., Broderick, N.A., Poidevin, M., Pradervand, S., and Lemaitre, B. 2009. Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation. Cell Host Microbe 5:200‐211.
  Buchon, N., Osman, D., David, F.P.A., Fang, H.Y., Boquete, J.P., Deplancke, B., and Lemaitre, B. 2013. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3:1725‐1738.
  Fischer, J.A., Giniger, E., Maniatis, T., and Ptashne, M. 1988. GAL4 activates transcription in Drosophila. Nature 332:853‐856.
  Iyer, E.P.R. and Cox, D.N. 2010. Laser capture microdissection of Drosophila peripheral neurons. J. Vis. Exp. 39:2016.
  Jiang, H., Grenley, M.O., Bravo, M.J., Blumhagen, R.Z., and Edgar, B.A. 2011. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 1:84‐95.
  Jiang, H., Patel, P.H., Kohlmaier, A., Grenley, M.O., McEwen, D.G., and Edgar, B.A. 2009. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343‐1355.
  Korzelius, J., Naumann, S.K., Loza‐Coll, M.A., Chan, J.S., Dutta, D., Oberheim, J., Gläßer, C., Southall, T.D., Brand, A.H., Jones, D.L., and Edgar, B.A. 2014. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. EMBO J. 33:2967‐2982.
  Kunitomo, H., Uesugi, H., Kohara, Y., and Iino, Y. 2005. Identification of ciliated sensory neuron‐expressed genes in Caenorhabditis elegans using targeted pull‐down of poly (A) tails. Genome Biol. 6:R17.
  Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, G., and Schroeder, J.I. 2004. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596‐615.
  Lim, R.S.M., Osato, M. and Kai, T. 2012. Isolation of undifferentiated female germline cells from adult Drosophila ovaries. Curr. Protoc. Stem Cell Biol. 22:2E.3.1‐2E.3.14.
  Loza‐Coll, M.A., Southall, T.D., Sandall, S.L., Brand, A.H., and Jones, L. 2014. Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO J. 33:2983‐2996.
  Marianes, A. and Spradling, A.C. 2013. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2:e00886.
  Micchelli, C.A. and Perrimon, N. 2006. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475‐479.
  Miller, M.R., Robinson, K.J., Cleary, M.D., and Doe, C.Q. 2009. TU‐tagging: Cell type‐specific RNA isolation from intact complex tissues. Nat. Methods 6:439‐444.
  Ohlstein, B. and Spradling, A. 2007. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988‐992.
  Osman, D., Buchon, N., Chakrabarti, S., Huang, Y.T., Su, W., Poidevin, M., Tsai, Y., and Lemaitre, B. 2012. Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. J. Cell Sci. 125:5944‐5949.
  Pasut, A., Oleynik, P., and Rudnicki, M.A. 2012. Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods Mol. Biol. 798:53‐64.
  Roy, P.J., Stuart, J.M., Lund, J., and Kim, S.K. 2002. Chromosomal clustering of muscle‐expressed genes in Caenorhabditis elegans. Nature 418:975‐979.
  Schmid, M.W., Schmidt, A., Klostermeier, U.C., Barann, M., Rosenstiel, P., and Grossniklaus, U. 2012. A powerful method for transcriptional profiling of specific cell types in eukaryotes: Laser‐assisted microdissection and RNA sequencing. PLoS One 7:e29685.
  Shigenobu, S., Arita, K., Kitadate, Y., Noda, C., and Kobayashi, S. 2006. Isolation of germline cells from Drosophila embryos by flow cytometry. Dev. Growth Differ. 48:49‐57.
  Steiner, F.A., Talbert, P.B., Kasinathan, S., Deal, R.B., and Henikof, S. 2012. Cell type‐specific nuclei purification from whole animals for genome‐wide expression and chromatin profiling. Genome Res. 22:766‐777.
  Yang, Z., Edenberg, H,J., and Davis, R.L. 2005. Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucleic Acids Res. 33:e148.
  Zhou, J., Florescu, S., Boettcher, A.‐L., Luo, L., Dutta, D., Kerr, G., Cai, Y., Edgar, B.A., and Boutros, M. 2015. Dpp/Gbb signaling is required for normal intestinal regeneration during infection. Dev. Biol. 399:189‐203.
  Zielke, N., Korzelius, J., van Straaten, M., Bender, K., Schuhknecht, G.F.P., Dutta, D., Xiang, J., and Edgar, B.A. 2014. Fly‐FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 7:588‐598.
  Zou, K., Hou, L., Sun, K., Xie, W., and Wu, J. 2011. Improved efficiency of female germline stem cell purification using fragilis‐based magnetic bead sorting. Stem Cells Dev. 20:2197‐2204.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library