In Vivo Evaluation of Leukemic Stem Cells through the Xenotransplantation Model

Dominique Bonnet1

1 Cancer Research UK, London Research Institute, Haematopoietic Stem Cell Laboratory, London, United Kingdom
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 3.2
DOI:  10.1002/9780470151808.sc0302s7
Online Posting Date:  December, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The xenotransplantation model has been instrumental for the identification and characterization of human leukemic stem cells. This unit describes our current method for the engraftment of human leukemic patients' samples in the xenotransplanted mouse model. We concentrate uniquely on the model of acute myeloid leukemia, as it was the first type of leukemia for which the xenotransplantation model was developed. Nevertheless, the Basic Protocol could be applied to other sorts of blood disorders. Curr. Protoc. Stem Cell Biol. 7:3.2.1‐3.2.11. © 2008 by John Wiley & Sons, Inc.

Keywords: hematopoietic stem cell (HSC); xenotransplantation; immunodeficient mice; leukemic stem cell (LSC)

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Identification of Leukemia Stem Cells Through Xenotransplantation
  • Support Protocol 1: Intra‐Bone Marrow Injection
  • Support Protocol 2: Thawing AML Cells
  • Support Protocol 3: Purification Strategy
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Identification of Leukemia Stem Cells Through Xenotransplantation

  Materials
  • Immunodeficient mice: NOD/SCID, NOD/SCID‐β 2 microglobulin null (β2m−/−), or NOD/SCID IL2R gammanull (Jackson Laboratory)
  • Acidified water: a solution of HCl at a final pH 2.8 to 3.2
  • AML sample: peripheral blood or bone marrow
  • Phosphate‐buffered saline, calcium‐ and magnesium‐free (CMF‐PBS; see recipe)
  • Ammonium chloride solution (Stem Cell Technologies)
  • Fetal bovine serum (FBS; Stem Cell Technologies, cat. no. 06471)
  • Antibodies against human CD45, CD34, CD38, CD33, and CD19 (BD Biosciences Pharmingen)
  • 100 ng/ml 4′,6‐diamidino‐2‐phenylindole (DAPI; UV excited, Sigma‐Aldrich) or TOPRO‐3 [HeNe (633‐nm) excitable, Molecular Probes]
  • Irradiator: Cesium source is recommended, but an X‐ray system or Cobalt source can also be used
  • 29‐G, ½‐in. needle and insulin syringe (Tyco Healthcare)
  • Dissection tools: scissors and forceps
  • 5‐ml snap‐top polystyrene tubes
  • Benchtop centrifuge equipped with swing‐out bucket rotor for 15‐ and 50‐ml conical tubes
  • Hemacytometer
  • Fluorescent‐activated cell sorter, e.g., FACSAria (BD Biosciences) and/or a Moflow (Dako) equipped with 488‐nm, 633‐nm, and 404‐nm lasers
  • 440/40 bandpass (bp) filter for analysis of DAPI, a 530/30 bp filter for FITC, a 575/26 bp for PE, a 695/40 bp for PerCP, and a 660/20 bp for TOPRO‐3
  • Mouse depletion kit (e.g., StemCell Technologies, cat. no. 13066)
  • Additional reagents and equipment for assessing for AML engraftment ( protocol 4), parenteral injections (Donovan and Brown, ), euthanasia of mice (Donovan and Brown, ), and performing a cell count using a hemacytometer (unit 1.3)

Support Protocol 1: Intra‐Bone Marrow Injection

  • Anesthetic solution (see recipe)
  • Post‐operative analgesic (Vetergesic; Alstoe Animal health), diluted 1/10 in PBS and injected at 100 µl subcutaneously per mouse
  • 29‐G, ½‐in. needle (or 25‐G needle) and insulin syringe (Tyco Healthcare)

Support Protocol 2: Thawing AML Cells

  Materials
  • AML cells, frozen in 1.8‐ to 2‐ml cryovials
  • DNase (Sigma, cat. no. D4513), thawed
  • Fetal bovine serum (FBS; Stem Cell Technologies, cat. no. 06471) or any other suppliers
  • Phosphate‐buffered saline, calcium‐ and magnesium‐free (CMF‐PBS; see recipe)
  • 37°C water bath
  • 50‐ml centrifuge tubes, sterile
  • Table‐top centrifuge equipped with swing‐out bucket rotor for 15‐ and 50‐ml conical tubes
  • Cell strainer
  • Additional reagents and equipment for counting cells (unit 1.3)
NOTE: Before thawing the samples, ensure the water bath is at 37°C.NOTE: Before starting, ensure that the DNase is completely thawed.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Blair, A., Hogge, D.E., Ailles, L.E., Lansdorp, P.M., and Sutherland, H.J. 1997. Lack of expression of Thy‐1 (CD90) on acute myeloid leukemia cells with long‐term proliferative ability in vitro and in vivo. Blood 89:3104‐3112.
   Blair, A., Hogge, D.E., and Sutherland, H.J. 1998. Most acute myeloid leukemia progenitor cells with long‐term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(‐)/HLA‐DR. Blood 92:4325‐4335.
   Blair, A. and Sutherland, H.J. 2000. Primitive acute myeloid leukemia cells with long‐term proliferative ability in vitro and in vivo lack surface expression of c‐kit (CD117). Exp. Hematol. 28:660‐671.
   Bonnet, D. and Dick, J.E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:730‐737.
   Christianson, S.W., Greiner, D.L., Hesselton, R.A., Leif, J.H., Wagar, E.J., Schweitzer, I.B., Raian, T.V., Gott, B., Roopenian, D.C., and Shultz, L.D. 1997. Enhanced human CD4+ T cell engraftment in beta2‐microglobulin‐deficient NOD‐scid mice. J. Immunol. 158:3578‐3586.
   Donovan, J. and Brown, P. 2006a. Parenteral injections. Curr. Protoc. Immunol. 73:1.6.1‐1.6.10.
   Donovan, J. and Brown, P. 2006b. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Glimm, H., Eisterer, W., Lee, K., Cashman, J., Holyoake, T. L., Nicolini, F., Shultz, L.D., von Kalle, C., and Eaves, C.J. 2001. Previously undetected human hematopoietic cell populations with short‐term repopulating activity selectively engraft NOD/SCID‐beta2 microglobulin‐null mice. J. Clin. Invest. 107:199‐206.
   Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hahn, I., Stevens, R., Burnett, A., and Gladstone, A. 1998. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92:2322‐2333.
   Grimwade, D., Walker, H., Harrison, G., Oliver, F., Chatters, S., Harrison, C. J., Wheatley, K., Burnett, A.K., and Goldstone, A.H.; Medical Research Council Adult Leukemia Working Party. 2001. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): Analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98:1312‐1320.
   Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., and Nakahata, T. 2003. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 102:873‐880.
   Hope, K. J., Jin, L., and Dick, J. E. 2004. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self‐renewal capacity. Nat. Immunol. 5:738‐743.
   Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L.D., and Harada, M. 2005. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106:1565‐1573.
   Jordan, C.T., Upchurch, D., Szilvassy, S.J., Guzman, M.L., Howard, D.S., Pettigrew, A.L., Meyerrose, T., Rossi, R., Grimes, B., Rizzeri, D.A., Luger, S.M., and Phillips, G.L. 2000. The interleukin‐3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777‐1784.
   Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres‐Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645‐648.
   Kollet, O., Peled, A., Byk, T., Ben‐Hur, H., Greiner, D., Shultz, L., and Lapidot, T. 2000. beta2 microglobulin‐deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95:3102‐3105.
   Mazurier, F., Doedens, M., Gan, O.I., and Dick, J.E. 2003. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD‐SCID mice reveals a new class of human stem cells. Nat. Med. 9:959‐963.
   Pearce, D.J., Taussig, D., Zibara, K., Smith, L.L., Ridler, C.M., Preudhomme, C., Young, B.D., Rohatneer, A.Z., Lister, T.A., and Bonnet, D. 2006. AML engraftment in the NOD/SCID assay reflects the outcome of AML: Implications for our understanding of the heterogeneity of AML. Blood 107:1166‐1173.
   Shultz, L.D., Lyons, B.L., Burzenski, L.M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S.D., King, M., Mangada, J., Greiner, D.L., and Handgretinger, R. 2005. Human lymphoid and myeloid cell development in NOD/LtSz‐scid IL2R gamma null mice engrafted with mobilized human hematopoietic stem cells. J. Immunol. 174:6477‐6489.
   Taussig, D.C., Pearce, D.J., Simpson, C., Rohatiner, A.Z., Lister, T.A., Kelly, G., Luongo, J.L., Danet‐Desnoyers, G.A., and Bonnet, D. 2005. Hematopoietic stem cells express multiple myeloid markers: Implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106:4086‐4092.
   Taussig, D.C., Miraki‐Moud, F., Anjos‐Afonso, F., Pearce, D.J., Allen, K., Ridler, C., Lillington, D., Oakervee, H., Cavenagh, J., Agrawal, S.G., Lister, T.A., Gribben, J.G., and Bonnet, D. 2008. Anti‐CD38 antibody‐mediated clearance of human repopulating cells masks the heterogeneity of leukemia‐initiating cells. Blood 112:568‐575.
   Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J.C., Lanzavecchia, A., and Manz, M.G. 2004. Development of a human adaptive immune system in cord blood cell‐transplanted mice. Science 304:104‐107.
   Verlinden, S.F., van Es, H.H., and van Bekkum, D.W. 1998. Serial bone marrow sampling for long‐term follow up of human hematopoiesis in NOD/SCID mice. Exp. Hematol. 26:627‐630.
   Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., Fijimura, Y., Tsuji, T., Ikehara, S., and Sonoda, Y. 2003. SCID‐repopulating cell activity of human cord blood‐derived CD34‐ cells assured by intra‐bone marrow injection. Blood 101:2924‐2931.
   Yahata, T., Ando, K., Nakamura, Y., Ueyama, Y., Shimamura, K., Tamaoki, N., Kato, S., and Hotta, T. 2002. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi‐scid, IL‐2 receptor gamma null mice. J. Immunol. 169:204‐209.
   Yahata, T., Ando, K., Sato, T., Miyatake, H., Nakamura, Y., Muguruma, Y., Kato, S., and Hotta, T. 2003. A highly sensitive strategy for SCID‐repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 101:2905‐2913.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library