Organotypic Explant Culture of Glioblastoma Multiforme and Subsequent Single‐Cell Suspension

Fumiko Shimizu1, Koos E. Hovinga2, Michael Metzner3, Denis Soulet4, Viviane Tabar1

1 Department of Neurosurgery, Memorial Sloan‐Kettering Cancer Center, New York, New York, 2 Neurosurgical Center, Academic Medical Center, , University of Amsterdam, The Netherlands, 3 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, 4 Axis of Neurosciences, CHUQ Research Center (CHUL), Québec, Canada
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 3.5
DOI:  10.1002/9780470151808.sc0305s19
Online Posting Date:  December, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM cell lines used in laboratory studies are frequently passaged in various culture media at high proliferation rates, resulting in significant genetic and molecular alterations. Thus, data obtained in cell lines are often inapplicable to patient tumors. Furthermore, recent studies suggest that there is a stem cell–like hierarchy among GBM cell populations and a crucial role for tumor vasculature in stem cells, as well as tumor growth, which cannot be reproduced in cell line cultures. Our laboratory has developed a novel three‐dimensional (3D) organotypic “explant” system of surgical GBM specimens that preserves tumor cells in their original milieu, as well as the cytoarchitecture of the tumor stroma. Our previous study on the role of Notch inhibition has demonstrated a definitive effect on the tumor endothelium that could only be highlighted by this system. In this unit, we describe a detailed protocol for preparing GBM explants, and discuss strengths, as well as limitations of the explant system as an in vitro 3D model of GBM. Curr. Protoc. Stem Cell Biol. 19:3.5.1‐3.5.9. © 2011 by John Wiley & Sons, Inc.

Keywords: glioblastoma multiforme (GBM); organotypic cultures; explants; endothelial cells; cancer stem cells; tumor stroma; 3D culture system

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Organotypic GBM Explant Culture
  • Basic Protocol 2: Preparing Single‐Cell Suspension from GBM Explants
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Organotypic GBM Explant Culture

  Materials
  • GBM (tumor) specimen on ice
  • Phosphate‐buffered saline, calcium‐ and magnesium‐free (CMF‐PBS; Invitrogen, cat. no. 21600)
  • Penicillin/streptomycin
  • Red blood cell (RBC) lysis buffer (eBioscience)
  • Ice
  • Fibronectin (see recipe)
  • Explant culture medium (N2 medium; see recipe)
  • 35‐ and 100‐mm culture dishes
  • Stereoscopic dissecting microscope
  • Leica KL 1500 LCD (150‐watt cold light source)
  • 27‐G 1/2‐in. needles
  • 1‐ml syringes
  • Millicell inserts (Millipore)
  • Scalpel no.10 (BD)

Basic Protocol 2: Preparing Single‐Cell Suspension from GBM Explants

  Materials
  • GBM explants cultured on Millicell inserts (see protocol 1)
  • Hank's balanced salt solution without Ca2+ and Mg2+ (CMF‐HBSS)
  • Liberase I
  • DNase I
  • Glucose
  • Ice
  • Scalpel no.10 (BD)
  • Forceps
  • 1.5 ml microcentrifuge tubes
  • Microcentrifuge
  • FACS tubes with cell‐strainer cap
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C.P. 2007. CD133(+) and CD133(−) glioblastoma‐derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67:4010‐4015.
   Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., Frank, A., Bayazitov, I.T., Zakharenko, S.S., Gajjar, A., Davidoff, A., and Gilbertson, R.J. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11:69‐82.
   Clement, V., Marino, D., Cudalbu, C., Hamou, M.F., Mlynarik, V., de Tribolet, N., Dietrich, P.Y., Gruetter, R., Hegi, M.E., and Radovanovic, I. 2010. Marker‐independent identification of glioma‐initiating cells. Nat. Methods 7:224‐228.
   De Witt Hamer, P.C., Van Tilborg, A.A.G., Eijk, P.P., Sminia, P., Troost, D., Van Noorden, C.J.F., Ylstra, B., and Leenstra, S. 2008. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27:2091‐2096.
   Ferrari, D., Binda, E., De Filippis, L., and Vescovi, AL. 2010. Isolation of neural stem cells from neural tissues using the neurosphere technique. Curr. Protoc. Stem Cell Biol. 15:2D.6.1‐2D.6.18.
   Gähwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A., and Thompson, S.M. 1997. Organotypic slice cultures: A technique has come of age. Trends Neurosci. 20:471‐477.
   Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. 2004. Isolation and characterization of tumorigenic, stem‐like neural precursors from human glioblastoma. Cancer Res. 64:7011‐7021.
   Hovinga, K.E., Shimizu, F., Wang, R., Panagiotakos, G., Van Der Heijden, M., Moayedpardazi, H., Correia, A.S., Soulet, D., Major, T., Menon, J., and Tabar, V. 2010. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28:1019‐1029.
   Inda, M.M., Bonavia, R., Mukasa, A., Narita, Y., Sah, D.W., Vandenberg, S., Brennan, C., Johns, T.G., Bachoo, R., Hadwiger, P., Tan, P., Depinho, R.A., Cavenee, W., and Furnari, F. 2010. Tumor heterogeneity is an active process maintained by a mutant EGFR‐induced cytokine circuit in glioblastoma. Genes Dev. 24:1731‐1745.
   Joyce, J.A. 2005. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513‐520.
   Jung, S., Kim, H.W., Lee, J.H., Kang, S.S., Rhu, H.H., Jeong, Y.I., Yang, S.Y., Chung, H.Y., Bae, C.S., Choi, C., Shin, B.A., Kim, K.K., and Ahn, K.Y. 2002. Brain tumor invasion model system using organotypic brain‐slice culture as an alternative to in vivo model. J. Cancer Res. Clin. Oncol. 128:469‐476.
   Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., Christopher, N., Zhang, W., Park, J.K., and Fine, H.A. 2006. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum‐cultured cell lines. Cancer Cell 9:391‐403.
   Li, A., Walling, J., Kotliarov, Y., Center, A., Steed, M.E., Ahn, S.J., Rosenblum, M., Mikkelsen, T., Zenklusen, J.C., and Fine, H.A. 2008. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol. Cancer Res. 6:21‐30.
   Pallini, R., Ricci‐Vitiani, L., Banna, G.L., Signore, M., Lombardi, D., Todaro, M., Stassi, G., Martini, M., Maira, G., Larocca, L.M., and De Maria, R. 2008. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin. Cancer Res. 14:8205‐8212.
   Pollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., Squire, J.A., Smith, A., and Dirks, P. 2009. Glioma stem cell lines expanded in adherent culture have tumor‐specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568‐580.
   Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. 2004. Identification of human brain tumour initiating cells. Nature 432:396‐401.
   Son, M.J., Woolard, K., Nam, D.H., Lee, J., and Fine, H.A. 2009. SSEA‐1 is an enrichment marker for tumor‐initiating cells in human glioblastoma. Cell Stem Cell 4:440‐452.
   Stoppini, L., Buchs, P.A., and Muller, D. 1991. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37:173‐182.
   Sutherland, R.M. 1988. Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240:177‐184.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library