Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research

Raman V. Nelakanti1, Nigel G. Kooreman2, Joseph C. Wu1

1 Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 2 Department of Vascular Surgery, Leiden University Medical Center, Leiden
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 4A.8
DOI:  10.1002/9780470151808.sc04a08s32
Online Posting Date:  February, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes protocols for evaluating the pluripotency of embryonic and induced pluripotent stem cells using a teratoma formation assay. Cells are prepared for injection and transplanted into immunodeficient mice at the gastrocnemius muscle, a site well suited for teratoma growth and surgical access. Teratomas that form from the cell transplants are explanted, fixed in paraformaldehyde, and embedded in paraffin. These preserved samples are sectioned, stained, and analyzed. Pluripotency of a cell line is confirmed by whether the teratoma contains tissues derived from each of the embryonic germ layers: endoderm, mesoderm, and ectoderm. Alternatively, explanted and fixed teratomas can be cryopreserved for immunohistochemistry, which allows for more detailed identification of specific tissue types present in the samples. © 2015 by John Wiley & Sons, Inc.

Keywords: pluripotent stem cell; induced pluripotent stem cell; embryonic stem cell; teratoma; pluripotency; tumorigenicity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Injection of Pluripotent Stem Cells in the Gastrocnemius Muscle
  • Support Protocol 1: Preparation of Pluripotent Stem Cells for Injection
  • Basic Protocol 2: Preparation of Teratomas for Histological Analysis
  • Alternate Protocol 1: Cryopreservation of Teratomas and Immunofluorescence Staining
  • Reagents and solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Injection of Pluripotent Stem Cells in the Gastrocnemius Muscle

  Materials
  • PSCs suspended in Matrigel (see protocol 2Support Protocol), on ice
  • Disinfectant (not ethanol‐based)
  • Immunodeficient mice: NOD‐SCID IL2Rgammanull (NSG)
  • Isoflurane (2‐chloro‐2‐(difluoromethoxy)‐1,1,1‐trifluoroethane, Isothesia, Butler Schein cat. no. 029405)
  • Hair removal cream
  • Iodine solution
  • Isopropyl alcohol wipes or 70% (v/v) ethanol
  • Anesthesia unit or knockdown chamber
  • 37°C heating pad
  • Surgical station
  • Sterile surgical drape
  • Nose cone for anesthesia
  • Electric clippers
  • Gauze or paper towel
  • Surgical tape (optional)

Support Protocol 1: Preparation of Pluripotent Stem Cells for Injection

  Materials
  • Culture or frozen stock of PSCs
  • Phosphate‐buffered saline (PBS), without calcium and magnesium (Life Technologies cat. no. 14190)
  • Human cell dissociation medium: 0.25 mM EDTA in PBS (store up to 6 months at 4°C)
  • Human PSC culture medium (Essential 8 Medium, Life Technologies cat. no. A1517001)
  • Trypsin‐EDTA (TrypLE Express Enzyme, Life Technologies cat. no. 12605010)
  • Mouse PSC culture medium with 10% fetal bovine serum (FBS)
  • Matrigel matrix, growth factor−reduced, phenol red−free (BD Biosciences cat. no. 356231)
  • 10‐cm cell culture plates
  • 15‐ml tubes
  • Insulin syringes (29‐G × 0.5‐in. needle, 3/10 cc, Terumo Medical cat. no. SS30M2913)
  • Additional reagents and equipment for counting cells

Basic Protocol 2: Preparation of Teratomas for Histological Analysis

  Materials
  • Mouse with teratoma (see protocol 1)
  • 4% (w/v) paraformaldehyde (PFA) in PBS
  • 70%, 90%, 95%, and 100% (v/v) ethanol solutions
  • Xylene
  • Paraffin
  • Surgical pins, scissors, and forceps
  • 50‐ml Falcon tubes
  • Immunohistochemistry cassettes
  • Microtome
  • Microscope slides
  • Additional reagents and equipment for euthanasia

Alternate Protocol 1: Cryopreservation of Teratomas and Immunofluorescence Staining

  Materials
  • 30% (w/v) sucrose in PBS
  • Optimum cutting temperature (OCT) medium (Electron Microscopy Sciences cat. no. 62550‐01)
  • Isopropanol
  • Dry ice
  • PBS
  • Permeabilizing solution (see recipe)
  • Blocking solution (see recipe)
  • Primary and secondary antibodies
  • Wash solution (see recipe)
  • Mounting medium
  • 50‐ml Falcon tubes
  • Cryomolds
  • Glass container for freezing
  • Cryostat
  • Microscope slides (Superfrost Plus, Fisher Scientific cat. no. 12‐550‐15)
  • Blow dryer
  • Liquid blocker, Pap pen (Sigma‐Aldrich cat. no. z377821; optional)
  • Washing jars with holder for multiple slides
  • Humidified black staining box
  • Aluminum foil
  • Cover slips
  • Additional reagents and equipment for excising and fixing teratomas (see protocol 3)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Ben‐David, U. , Mayshar, Y. , and Benvenisty, N. 2013. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat. Protoc. 8:989‐997.
   Bhattacharya, B. , Miura, T. , Brandenberger, R. , Mejido, J. , Luo, Y. , Yang, A.X. , Joshi, B.H. , Ginis, I. , Thies, R.S. , Amit, M. , Lyons, I. , Condie, B.G. , Itskovitz‐Eldor, J. , Rao, M.S. , and Puri, R.K. 2004. Gene expression in human embryonic stem cell lines: Unique molecular signature. Blood 103:2956‐2964.
   Bock, C. , Kiskinis, E. , Verstappen, G. , Gu, H. , Boulting, G. , Smith, Z.D. , Ziller, M. , Croft, G.F. , Amoroso, M.W. , Oakley, D.H. , Gnirke, A. , Eggan, K. , and Meissner, A. 2011. Reference maps of human ES and iPS cell variation enable high‐throughput characterization of pluripotent cell lines. Cell 144:439‐452.
   Brivanlou, A.H. , Gage, F.H. , Jaenisch, R. , Jessell, T. , Melton, D. , and Rossant, J. 2003. Stem cells. Setting standards for human embryonic stem cells. Science 300:913‐916.
   Buchwalow, I.H. and Böcker, W. 2010. Probes processing in immunohistochemistry. In Immunohistochemistry: Basics and Methods, pp. 19‐29. Springer‐Verlag, Heidelberg.
   Buta, C. , David, R. , Dressel, R. , Emgård, M. , Fuchs, C. , Gross, U. , Healy, L. , Hescheler, J. , Kolar, R. , Martin, U. , Mikkers, H. , Müller, F.‐J. , Schneider, R.K. , Seiler, A.E.M. , Spielmann, H. , and Weitzer, G. 2013. Reconsidering pluripotency tests: Do we still need teratoma assays? Stem Cell Res. 11:552‐562.
   Cao, F. , Lin, S. , Xie, X. , Ray, P. , Patel, M. , Zhang, X. , Drukker, M. , Dylla, S.J. , Connolly, A.J. , Chen, X. , Weissman, I.L. , Gambhir, S.S. , and Wu, J.C. 2006. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005‐1014.
   Cao, F. , van der Bogt, K.E.A. , Sadrzadeh, A. , Xie, X. , Sheikh, A.Y. , Wang, H. , Connolly, A.J. , Robbins, R.C. , and Wu, J.C. 2007. Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev. 16:883‐891.
   Cardiff, R.D. , Miller, C.H. , and Munn, R.J. 2014. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014:655‐658.
   Cooke, M.J. , Stojkovic, M. , and Przyborski, S.A. 2006. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 15:254‐259.
   Daley, G.Q. , Lensch, M.W. , Jaenisch, R. , Meissner, A. , Plath, K. , and Yamanaka, S. 2009. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4:200‐201; author reply 202.
   Dressel, R. 2011. Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin. Immunopathol. 33:573‐591.
   Fawcett, D.W. 1950. Bilateral ovarian teratomas in a mouse. Cancer Res. 10:705‐707.
   Fekete, E. and Ferrigno, M.A. 1952. Studies on a transplantable teratoma of the mouse. Cancer Res. 12:438‐440.
   Fischer, A.H. , Jacobson, K.A. , Rose, J. , and Zeller, R. 2008. Cryosectioning tissues. Cold Spring Harb. Protoc. doi:10.1101/pdb.prot4991.
   Fraenkel‐Conrat, H. and Olcott, H.S. 1948. The reaction of formaldehyde with proteins; cross‐linking between amino and primary amide or guanidyl groups. J. Am. Chem. Soc. 70:2673‐2684.
   Gertow, K. , Przyborski, S. , Loring, J.F. , Auerbach, J.M. , Epifano, O. , Otonkoski, T. , Damjanov, I. , and Ahrlund‐Richter, L. 2007. Isolation of human embryonic stem cell‐derived teratomas for the assessment of pluripotency. Curr. Protoc. Stem Cell Biol. 3:1B.4.1‐1B.4.29.
   Gropp, M. , Shilo, V. , Vainer, G. , Gov, M. , Gil, Y. , Khaner, H. , Matzrafi, L. , Idelson, M. , Kopolovic, J. , Zak, N.B. , and Reubinoff, B.E. 2012. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS One 7:e45532.
   Gutierrez‐Aranda, I. , Ramos‐Mejia, V. , Bueno, C. , Munoz‐Lopez, M. , Real, P.J. , Mácia, A. , Sanchez, L. , Ligero, G. , Garcia‐Parez, J.L. , and Menendez, P. 2010. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568‐1570.
   Hentze, H. , Soong, P.L. , Wang, S.T. , Phillips, B.W. , Putti, T.C. , and Dunn, N.R. 2009. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. 2:198‐210.
   Karlsson, C. , Emanuelsson, K. , Wessberg, F. , Kajic, K. , Axell, M.Z. , Eriksson, P.S. , Lindahl, A. , Hyllner, J. , and Strehl, R. 2009. Human embryonic stem cell‐derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Res. 3:39‐50.
   Kim, J.B. , Zaehres, H. , Wu, G. , Gentile, L. , Ko, K. , Sebastiano, V. , Araúzo‐Bravo, M.J. , Ruau, D. , Han, D.W. , Zenke, M. , and Schöler, H.R. 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646‐650.
   Koehler, K.R. , Tropel, P. , Theile, J.W. , Kondo, T. , Cummins, T.R. , Viville, S. , and Hashino, E. 2011. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells. BMC Neurosci. 12:82.
   Kooreman, N.G. and Wu, J.C. 2010. Tumorigenicity of pluripotent stem cells: Biological insights from molecular imaging. J. R. Soc. Interface 7 Suppl 6:S753‐S763.
   Lan, F. , Lee, A.S. , Liang, P. , Sanchez‐Freire, V. , Nguyen, P.K. , Wang, L. , Han, L. , Yen, M. , Wang, Y. , Sun, N. , Abilez, O.J. , Hu, S. , Ebert, A.D. , Navarrete, E.G. , Simmons, C.S. , Wheeler, M. , Pruitt, B. , Lewis, R. , Yamaguchi, Y. , Ashley, E.A. , Bers, D.M. , Robbins, R.C. , Longaker, M.T. , and Wu, J.C. 2013. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient‐specific induced pluripotent stem cells. Cell Stem Cell 12:101‐113.
   Laurent, L.C. , Ulitsky, I. , Slavin, I. , Tran, H. , Schork, A. , Morey, R. , Lynch, C. , Harness, J. V , Lee, S. , Barrero, M.J. , Ku, S. , Martynova, M. , Semechkin, R. , Galat, V. , Gottesfeld, J. , Izpisua Belmonte, J.C. , Murry, C. , Keirstead, H.S. , Park, H.‐S. , Schmidt, U. , Laslett, A.L. , Muller, F.‐J. , Nievergelt, C.M. , Shamir, R. , and Loring, J.F. 2011. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106‐118.
   Lee, A.S. , Tang, C. , Cao, F. , Xie, X. , van der Bogt, K. , Hwang, A. , Connolly, A.J. , Robbins, R.C. , and Wu, J.C. 2009. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608‐2612.
   Lee, A.S. , Tang, C. , Rao, M.S. , Weissman, I.L. , and Wu, J.C. 2013. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19:998‐1004.
   Lees, J.G. , Lim, S.A. , Croll, T. , Williams, G. , Lui, S. , Cooper‐White, J. , McQuade, L.R. , Mathiyalagan, B. , and Tuch, B.E. 2007. Transplantation of 3D scaffolds seeded with human embryonic stem cells: Biological features of surrogate tissue and teratoma‐forming potential. Regen. Med. 2:289‐300.
   Li, X.‐Y. , Jia, Q. , Di, K.‐Q. , Gao, S.‐M. , Wen, X.‐H. , Zhou, R.‐Y. , Wei, W. , and Wang, L.‐Z. 2007. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation. Cell Tissue Res. 327:607‐614.
   Lister, R. , Pelizzola, M. , Kida, Y.S. , Hawkins, R.D. , Nery, J.R. , Hon, G. , Antosiewicz‐Bourget, J. , O'Malley, R. , Castanon, R. , Klugman, S. , Downes, M. , Yu, R. , Stewart, R. , Ren, B. , Thomson, J.a. , Evans, R.M. , and Ecker, J.R. 2011. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68‐73.
   Marks, H. , Kalkan, T. , Menafra, R. , Denissov, S. , Jones, K. , Hofemeister, H. , Nichols, J. , Kranz, A. , Stewart, A.F. , Smith, A. , and Stunnenberg, H.G. 2012. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590‐604.
   Martí, M. , Mulero, L. , Pardo, C. , Morera, C. , Carrió, M. , Laricchia‐Robbio, L. , Esteban, C.R. , and Izpisua Belmonte, J.C. 2013. Characterization of pluripotent stem cells. Nat. Protoc. 8:223‐253.
   Martin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U.S.A. 78:7634‐7638.
   Masui, S. , Nakatake, Y. , Toyooka, Y. , Shimosato, D. , Yagi, R. , Takahashi, K. , Okochi, H. , Okuda, A. , Matoba, R. , Sharov, A.A. , Ko, M.S.H. , and Niwa, H. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9:625‐635.
   Mills, J.A. , Wang, K. , Paluru, P. , Ying, L. , Lu, L. , Galvão, A.M. , Xu, D. , Yao, Y. , Sullivan, S.K. , Sullivan, L.M. , Mac, H. , Omari, A. , Jean, J.‐C. , Shen, S. , Gower, A. , Spira, A. , Mostoslavsky, G. , Kotton, D.N. , French, D.L. , Weiss, M.J. , and Gadue, P. 2013. Clonal genetic and hematopoietic heterogeneity among human‐induced pluripotent stem cell lines. Blood 122:2047‐2051.
   Mitsui, K. , Tokuzawa, Y. , Itoh, H. , Segawa, K. , Murakami, M. , Takahashi, K. , Maruyama, M. , Maeda, M. , and Yamanaka, S. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631‐642.
   Müller, F.‐J. , Goldmann, J. , Löser, P. , and Loring, J.F. 2010. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6:412‐414.
   Müller, F.‐J. , Schuldt, B.M. , Williams, R. , Mason, D. , Altun, G. , Papapetrou, E.P. , Danner, S. , Goldmann, J.E. , Herbst, A. , Schmidt, N.O. , Aldenhoff, J.B. , Laurent, L.C. , and Loring, J.F. 2011. A bioinformatic assay for pluripotency in human cells. Nat. Methods 8:315‐317.
   Narsinh, K.H. , Sun, N. , Sanchez‐Freire, V. , Lee, A.S. , Almeida, P. , Hu, S. , Jan, T. , Wilson, K.D. , Leong, D. , Rosenberg, J. , Yao, M. , Robbins, R.C. , and Wu, J.C. 2011. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Invest. 121:1217‐1221.
   Noaksson, K. , Zoric, N. , Zeng, X. , Rao, M.S. , Hyllner, J. , Semb, H. , Kubista, M. , and Sartipy, P. 2005. Monitoring differentiation of human embryonic stem cells using real‐time PCR. Stem Cells 23:1460‐1467.
   Park, Y.B. , Kim, Y.Y. , Oh, S.K. , Chung, S.G. , Ku, S.Y. , Kim, S.H. , Choi, Y.M. , and Moon, S.Y. 2008. Alterations of proliferative and differentiation potentials of human embryonic stem cells during long‐term culture. Exp. Mol. Med. 40:98‐108.
   Plaia, T.W. , Josephson, R. , Liu, Y. , Zeng, X. , Ording, C. , Toumadje, A. , Brimble, S.N. , Sherrer, E.S. , Uhl, E.W. , Freed, W.J. , Schulz, T.C. , Maitra, A. , Rao, M.S. , and Auerbach, J.M. 2006. Characterization of a new NIH‐registered variant human embryonic stem cell line, BG01V: A tool for human embryonic stem cell research. Stem Cells 24:531‐546.
   Prokhorova, T.A. , Harkness, L.M. , Frandsen, U. , Ditzel, N. , Schrøder, H.D. , Burns, J.S. , and Kassem, M. 2009. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 18:47‐54.
   Robinton, D.A. and Daley, G.Q. 2012. The promise of induced pluripotent stem cells in research and therapy. Nature 481:295‐305.
   Stevens, L.C. and Little, C.C. 1954. Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl. Acad. Sci. U.S.A. 40:1080‐1087.
   Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663‐676.
   Takahashi, K. , Tanabe, K. , Ohnuki, M. , Narita, M. , Ichisaka, T. , Tomoda, K. , and Yamanaka, S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861‐872.
   Thomson, J.A. , Itskovitz‐Eldor, J. , Shapiro, S.S. , Waknitz, M.A. , Swiergiel, J.J. , Marshall, V.S. , and Jones, J.M. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145‐1147.
   Xie, X. , Hiona, A. , Lee, A.S. , Cao, F. , Huang, M. , Li, Z. , Cherry, A. , Pei, X. , and Wu, J.C. 2011. Effects of long‐term culture on human embryonic stem cell aging. Stem Cells Dev. 20:127‐138.
   Zeller, R. 1989. Fixation, embedding, and sectioning of tissues, embryos, and single cells. Curr. Protoc. Mol. Biol. 14:14.1.1‐14.1.8.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library