Production of Single Contracting Human Induced Pluripotent Stem Cell‐Derived Cardiomyocytes: Matrigel Mattress Technique

Adrian G. Cadar1, Tromondae K. Feaster2, Matthew D. Durbin3, Charles C. Hong4

1 Department of Medicine/Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, 2 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 3 Department of Pediatrics/Division of Neonatology, Indiana University School of Medicine, Indianapolis, Indiana, 4 Research Medicine, Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee
Publication Name:  Current Protocols in Stem Cell Biology
Unit Number:  Unit 4A.14
DOI:  10.1002/cpsc.32
Online Posting Date:  August, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes the published Matrigel mattress method. Briefly, we describe the preparation of the mattress, replating of the human induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CM) on the Matrigel mattress, and hiPSC‐CM mattress maintenance. Adherence to this protocol will yield individual, robustly shortening hiPSC‐CMs, which can be used for downstream applications. © 2017 by John Wiley & Sons, Inc.

Keywords: cardiac; Matrigel; hiPSC‐CMs; myocytes; stem cells

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • One 35‐mm dish containing day 30 hiPSC‐CMs (unit 4.2; Ohnuki, Takahashi, & Yamanaka, ; frozen hiPSC‐CMs should be thawed and cultured for 3 to 5 days before dissociation)
  • D‐PBS without CaCl 2 or MgCl 2 (Life Technologies, cat. no. 14190144)
  • TrypLE Express (Life Technologies, 12604013)
  • hiPSC‐CM medium (see recipe)
  • Matrigel Growth Factor Reduced Basement Membrane Matrix (Corning, cat. no. 356230)
  • 15‐ml conical centrifuge tube (e.g., Corning Falcon)
  • Small cell scraper (Corning, cat. no. 3010)
  • 2‐μl Gilson repeat pipettor with tips
  • Timer
  • Delta TPG dish (Delta TPG DISH (50/pack), 0.17 mm black; Fisher Scientific, cat. no. 12‐071‐34) for experiments (typically three dishes per group)
  • Light microscope
  • Additional reagents and equipment for counting cells using a hemacytometer (e.g., unit 1.13; Behar et al., )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ahola, A., Kiviaho, A. L., Larsson, K., Honkanen, M., Aalto‐Setala, K., & Hyttinen, J. (2014). Video image‐based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation. Biomedical Engineering Online, 13, 39. doi: 10.1186/1475‐925X‐13‐39.
  Anonymous. (2016). Global, regional, and national life expectancy, all‐cause mortality, and cause‐specific mortality for 249 causes of death, 1980‐2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388, 1459–1544. doi: 10.1016/S0140‐6736(16)31012‐1.
  Behar, R. Z., Bahl, V., Wang, Y., Weng, J.‐H., Lin, S. C., & Talbot, P. 2012. Adaptation of stem cells to 96‐well plate assays: Use of human embryonic and mouse neural stem cells in the MTT assay. Current Protocols in Stem Cell Biology, 23, 1C.13.1–1C.13.21. doi: 10.1002/9780470151808.sc01c13s23.
  Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., … Wu, J. C. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods, 11, 855–860. doi: 10.1038/nmeth.2999.
  Feaster, T. K., Cadar, A. G., Wang, L., Williams, C. H., Chun, Y. W., Hempel, J. E., … Hong, C. C. (2015). Matrigel Mattress: A method for the generation of single contracting human‐induced pluripotent stem cell–derived cardiomyocytes. Circulation Research, 117, 995–1000. doi: 10.1161/CIRCRESAHA.115.307580.
  Heidenreich, P.A., Albert, N.M., Allen, L.A., Bluemke, D.A., Butler, J., Fonarow, G.C., …, Stroke Council. (2013). Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circulation–Heart Failure, 6, 606–619. doi: 10.1161/HHF.0b013e318291329a.
  Hinson, J. T., Chopra, A., Nafissi, N., Polacheck, W. J., Benson, C. C., Swist, S., … Seidman, C. E. (2015). HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 349, 982–986. doi: 10.1126/science.aaa5458.
  Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., & Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21, 6188–6193. doi: 10.1021/bi00267a025.
  Li, X., Tsai, P., Wieder, E. D., Kribben, A., Van Putten, V., Schrier, R. W., & Nemenoff, R. A. (1994). Vascular smooth muscle cells grown on Matrigel. A model of the contractile phenotype with decreased activation of mitogen‐activated protein kinase. The Journal of Biological Chemistry, 269, 19653–19658.
  Liu, J., Sun, N., Bruce, M. A., Wu, J. C., & Butte, M. J. (2012). Atomic force mechanobiology of pluripotent stem cell‐derived cardiomyocytes. PloS One, 7, e37559. doi: 10.1371/journal.pone.0037559.
  Mummery, C. L., Zhang, J., Ng, E. S., Elliott, D. A., Elefanty, A. G., & Kamp, T. J. (2012). Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circulation Research, 111, 344–358. doi: 10.1161/CIRCRESAHA.110.227512.
  Ohnuki, M., Takahashi, K., & Yamanaka, S. (2009). Generation and characterization of human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, 9, 4A.2.1–4A.2.25. doi: 10.1002/9780470151808.sc04a02s9.
  Ribeiro, A. J., Ang, Y. S., Fu, J. D., Rivas, R. N., Mohamed, T. M., Higgs, G. C., … Pruitt, B. L. (2015). Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proceedings of the National Academy of Sciences of the United States of America, 112, 12705–12710. doi: 10.1073/pnas.1508073112.
  Rodriguez, M. L., Graham, B. T., Pabon, L. M., Han, S. J., Murry, C. E., & Sniadecki, N. J. (2014). Measuring the contractile forces of human induced pluripotent stem cell–derived cardiomyocytes with arrays of microposts. Journal of Biomechanical Engineering, 136, 051005. doi: 10.1115/1.4027145.
  Soofi, S. S., Last, J. A., Liliensiek, S. J., Nealey, P. F., & Murphy, C. J. (2009). The elastic modulus of Matrigel as determined by atomic force microscopy. Journal of Structural Biology, 167, 216–219. doi: 10.1016/j.jsb.2009.05.005.
  Vukicevic, S., Kleinman, H. K., Luyten, F. P., Roberts, A. B., Roche, N. S., & Reddi, A. H. (1992). Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Experimental Cell Research, 202, 1–8. doi: 10.1016/0014‐4827(92)90397‐Q.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library