Preclinical Models of Parkinson's Disease

Krys S. Bankiewicz1, Rosario Sanchez‐Pernaute2, Yoshitsugu Oiwa3, Malgorzata Kohutnicka4, Alex Cummins5, Jamie Eberling6

1 University of California San Francisco, San Francisco, California, 2 McLean Hospital and Harvard Medical School, Boston, Massachusetts, 3 Wakayama Medical University, Wakayama, 4 Institute of Psychiatry and Neurology, Warsaw, 5 National Institute of Mental Health, Bethesda, Maryland, 6 University of California Davis, Davis, California
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 1.8
DOI:  10.1002/0471140856.tx0108s18
Online Posting Date:  February, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder in which pigmented midbrain neurons progressively die producing a dopamine (DA) deficit in the striatum, which manifests as an akinetic movement disorder. Experimentally induced striatal DA depletion in animals is a valid model of parkinsonism. The capacity of certain substances to damage catecholaminergic neurons has been used extensively to produce DA deficiency in animals. This unit describes methods for inducing parkinsonism in nonhuman primates and rodents using the neurotoxins 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) and 6‐hydroxydopamine (6‐OHDA). Additionally, procedures for evaluating the animals are presented.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Combined ICA and Intravenous Administration of MPTP: The Overlesioned (Bilateral Asymmetric) Primate Model
  • Alternate Protocol 1: Systemic MPTP Lesion in Primates
  • Basic Protocol 2: Unilateral 6‐OHDA Lesion in Primates
  • Support Protocol 1: Evaluation of Changes in Motor Behavior in Response to L‐DOPA
  • Support Protocol 2: Monitoring Activity to Assess MPTP‐Treated Monkeys
  • Support Protocol 3: Rotational Behavior as a Measure of Unilateral Nigrostriatal Lesions
  • Basic Protocol 3: 6‐OHDA Lesions in Rats
  • Basic Protocol 4: MPTP Lesion in Mice
  • Support Protocol 4: Monitoring Activity in MPTP‐Treated Mice
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Combined ICA and Intravenous Administration of MPTP: The Overlesioned (Bilateral Asymmetric) Primate Model

  Materials
  • Sterile saline: 0.9% (w/v) NaCl
  • 10‐mg vial of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine HCl (MPTP·HCl; Sigma)
  • Adult macaques (Rhesus and Cynomolgus; Sierra Biomedical or Charles River)
  • Ketamine/xylazine
  • Isoflurane
  • Betadine
  • 70% (v/v) ethanol
  • 0.1 M HCl
  • Peroxide
  • 10‐ and 60‐ml sterile syringes
  • 10‐ or 30‐ml sterile vial
  • Animal balance (accurate to 0.1 g)
  • Intravenous (i.v.) extension set
  • Electric shaver
  • Alcohol pads
  • 22‐G i.v. catheter
  • Tracheal tube
  • Surgical table
  • Absorbant blue benchpads
  • Stretch gauze and cotton swabs
  • Sterile surgical tools: scalpel, large forceps, delicate curved forceps, scissors, needle holders, retractors, mosquito hemostats
  • 27‐G sterile needle
  • Infusion pump (fitted for a 60‐ml syringe)
  • 3‐0 Vicryl with needle
  • Plastic, transparent millimeter‐scale ruler
  • 22‐G angiocatheter
  • Heated water pad
  • Drapes
  • 2/0 silk suture
  • Towel clamps
CAUTION: The most hazardous operations in conducting MPTP animal experiments are the preparation, handling, and injection of concentrated solutions of MPTP. Always use a chemical hood and skin protection (gloves, Tyvex laboratory coat) and mask. Any spilled MPTP should be degraded by spraying with 0.1 N HCl, while excess solution should be mixed 1:1 with 6 M H 2SO 4 and degraded by adding 4.7 mg potassium permanganate per 100 ml. The concentration of MPTP in the solution used for ICA administration is very low (0.03 to 0.07 mg/ml) and therefore quite safe. However, solutions for i.v. administration (even small volumes) are much more concentrated, and additional caution must be taken.NOTE: Animals should be adults and should interact well with the investigators so clinical evaluation can be performed.

Alternate Protocol 1: Systemic MPTP Lesion in Primates

  • 3‐ml syringes equipped with 26‐G needles
  • Cage with back‐squeezing mechanism

Basic Protocol 2: Unilateral 6‐OHDA Lesion in Primates

  Materials
  • Sterile saline: 0.9% (w/v) NaCl
  • Adult marmosets (Sierra Biomedical or Charles River)
  • Ketamine/xylazine
  • Isoflurane
  • Betadine
  • 70% (v/v) ethanol
  • 4 mg/ml 6‐hydroxydopamine (6‐OHDA), HBr (Sigma) in 0.01% (w/v) ascorbate/0.9% (w/v) NaCl (protect from light)
  • Stereotaxic frame/tower (David Kopf Instruments)
  • Manipulator arm
  • Spinal needle
  • 5‐ml syringes
  • Intravenous (i.v.) line with 3‐way stopcock
  • 22‐G angiocatheter
  • Animal balance
  • Electric razor
  • Alcohol pads
  • Surgical tape
  • Tracheal tube
  • Isoflurane inhalation chamber
  • Sterile drapes, gauze, and rubber bands
  • Towel clamps
  • Tissue forceps
  • Scissors
  • Electric cauterizer
  • Water heating pad
  • Dremel drill with carbide bur excavating tip
  • 10‐µl Hamilton syringes and needle
  • 3‐0 Vicryl
  • 2‐0 silk sutures
NOTE: Animals should be adults and should interact well with the investigators so clinical evaluation can be performed.

Support Protocol 1: Evaluation of Changes in Motor Behavior in Response to L‐DOPA

  Materials
  • Lesioned animal (see protocol 1, protocol 2, and protocol 3)
  • L‐3,4‐Dihydroxyphenylalanine methyl ester (M‐L‐DOPA; Sigma)
  • Benserazide (Sigma)
  • Sterile saline: 0.9% (w/v) NaCl
  • Cage with back‐squeezing mechanism
  • 3‐ml syringes
  • 26‐ to 30‐G needles

Support Protocol 2: Monitoring Activity to Assess MPTP‐Treated Monkeys

  Materials
  • Lesioned animal (see protocol 1, protocol 2, and protocol 3)
  • Ketamine/xylazine
  • Personal activity monitors (PAM; ActiTrac, Individual Monitoring Systems)
  • PAM connector cable
  • Computer
  • Nylon cable ties
  • Vetwrap
  • Nylon collars/vest

Support Protocol 3: Rotational Behavior as a Measure of Unilateral Nigrostriatal Lesions

  Materials
  • Sprague‐Dawley rats, 200 to 250 g
  • Isoflurane
  • Betadine
  • 70% (w/v) ethanol
  • 4 mg/ml 6‐hydroxydopamine (6‐OHDA, HBr; Sigma) in 0.01% (w/v) ascorbate/saline (protect from light)
  • Sterile saline: 0.9% (w/v) NaCl
  • Animal balance (accurate to 0.1 g)
  • Isoflurane inhalation chamber
  • Electric razor
  • Stereotactic frame
  • Scalpel
  • Tissue forceps
  • Scissors
  • 10‐µl Hamilton syringes and needles
  • Dental drill
  • Sutures or staples

Basic Protocol 3: 6‐OHDA Lesions in Rats

  Materials
  • C57Black mouse, age 8 to 12 months
  • 1‐Methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine HCl (MPTP·HCl; Sigma)
  • Isotonic saline
  • Animal balance (accurate to 0.1 g)
  • 1‐ml syringe equipped with 26‐G needle

Basic Protocol 4: MPTP Lesion in Mice

  Materials
  • MPTP‐lesioned mouse (see protocol 8)
  • Dexamphetamine sulfate
  • Saline: 0.9% (w/v) NaCl
  • Automated open‐field instrument (e.g., Digiscan Animal Activity Monitor; Omnitech Electronics)
  • 1‐ml syringe with 26‐ to 30‐G needle
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Annett, L.E., Rogers, D.C., Hernandez, T.D., and Dunnett, T.B. 1992. Behavioral analysis of unilateral monamine depletions in the marmoset. Brain 115:825‐856.
   Bankiewicz, K.S., Oldfield, E.H., Chiueh, C.C., Doppman, J.L., Jacobowitz, D.M., and Kopin, I.J. 1986. Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). Life Sci. 39:7‐16.
   Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M., and Kopin, I.J. 1983. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. Proc. Natl. Acad. Sci. U.S.A. 890:4546‐4550.
   Date, I., Felten, D.L., and Felten, S.Y. 1990. Long term effect of MPTP in the mouse brain in relation to aging: Neurochemical and immunocytochemical analysis. Brain Res. 519:266‐272.
   Davis, G.C., Williams, A.C., Markey, S.P., Ebert, M.N., Caine, E.D., Reichert, C.M., and Kopin, I.J. 1979. Chronic parkinsonism secondary to intravenous injection of meperidine analogs. Psychiatry Res. 1:249‐254.
   Donnan, G.A., Kaczmarczyk, S.J., Mckenzie, J.S., Rowe, P.J., Kalnins, R.M., and Mendelsohn, F.A. 1987. Regional and temporal effects of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine on dopamine uptake sites in mouse brain. J. Neurol. Sci. 81:261‐271.
   Doudet, D.J., Miyake, H., Finn, R.T., Mclellan, C.A., Aigner, T.G., Wan, R.Q., Adams, H.R., and Cohen, R.M. 1989. 6‐18F‐L‐Dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP‐treated rhesus monkeys. Exp. Brain Res. 78:69‐80.
   Eberling, J.L., Bankiewicz, K.S., Jordan, S., Vanbrocklin, H.F., and Jagust, W.J. 1997. Pet studies of functional compensation in a primate model of Parkinson's disease. NeuroReport 8:2727‐2733.
   Eberling, J.L., Jagust, W.J., Taylor, S., Bringas, J., Pivirotto, P., Vanbrocklin, H.F., and Bankiewicz, K.S. 1998. A novel MPTP primate model of Parkinson's disease: Neurochemical and clinical changes. Brain Res. 805:259‐262.
   Emborg, M.E., Ma, S.Y., Mufson, E.J., Levey, A.I., Taylor, M.D., Brown, W.D., Holden, J.E., and Kordower, J.H. 1998. Age‐related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J. Comp. Neurol. 401:253‐265.
   Fearnley, J.M. and Lees, A.J. 1991. Aging and Parkinson's disease: Substantia nigra regional selectivity. Brain 114:2283‐2301.
   German, D.C., Dubach, M., Askari, S., Speciale, S.G., and Bowden, D.M. 1988. 1‐Methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced parkinsonian syndrome in Macaca fascicularis: Which midbrain dopaminergic neurons are lost? Neuroscience 24:161‐174.
   Hallman, H., Lange, J., Olson, L., Strömberg, I., and Johnsson, G. 1985. Neurochemical and histochemical characterization of neurotoxic effects of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine on brain catecholamine neurons in the mouse. J. Neurochem. 44:117‐127.
   Heikkila, R.E. and Sonsalla, P.K. 1987. The use of the MPTP‐treated mouse as an animal model of Parkinsonism. Can. J. Neurol. Sci. 14:436‐440.
   Heikkila, R.E., Hess, A., and Duvoisin, R.C. 1985. Dopaminergic neurotoxicity of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) in the mouse: Relationships between monoamine oxidase, MPTP metabolism and neurotoxicity. Life Sci. 36:231‐236.
   Herkenham, M., Little, M.D., Bankiewicz, K., Yang, S.‐C., Markey, S.P., and Johannessen, J.N. 1991. Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: An in vivo autoradiographic study. Neuroscience 40:133‐158.
   Javitch, J.A., D' amato, R.J., Strittmatter, S.M., and Snyder, S.H. 1985. Parkinsonism‐inducing neurotoxin N‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine: Uptake of the metabolite N‐methyl‐4‐phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U.S.A. 82:2173‐2177.
   Jordan, S., Eberling, J.L., Bankiewicz, K.S., Rosenberg, D., Coxson, P.G., Vanbrocklin, H.F., O' Neil, J.P., and Emborg, M.E. 1997. 6‐(18F)Fluoro‐L‐m‐tyrosine: Metabolism, PET kinetics and MPTP lesion in primates. Brain Res. 750:264‐276.
   Laruelle, M., Baldwin, R.M., Malison, R.T., Zea‐Ponce, Y., Zoghbi, S.S., al‐Tikriti, M.S., Sybirska, E.H., Zimmermann, R.C., Wisniewski, G., Neumeyer, J.L., et al. 1993. SPECT imaging of dopamine and serotonin transporters with [123I]β‐CIT: Pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295‐309.
   Lee, C.S., Sauer, H., and Bjorklund, A. 1996. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6‐hydroxydopamine in the rat. Neuroscience 72:641‐653.
   Leroux‐Nicollet, I. and Costentin, J. 1986. Acute locomotor effects of MPTP in mice and relationships with dopaminergic systems. In MPTP: A Neurotoxin Producing a Parkinsonian Syndrome (S.P. Markey, N. Castagnoli, A.J. Trevor, and, I.J. Kopin, eds.) pp. 419‐424. Academic Press.
   Melega, W.P., Perlmutter, M.M., Luxen, A., Nissenson, C.H., Grafton, S.T., Huang, S.C., Phelps, M.E., and Barrio, J.R. 1989. 4‐(18F)Fluoro‐L‐m‐tyrosine: An L‐3,4‐dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography. J. Neurochem. 53:311‐314.
   Nagatsu, T. and Yoshida, M. 1988. An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and diopterin in the nigrostriatal regions. Neurosci. Lett. 87:178‐182.
   Nicklas, W.J., Vyas, R.E., and Heikkila, R.E. 1985. Inhibition of NADH‐linked oxidation in brain mitochondria by 1‐methyl‐4‐phenyl‐pyridine, a metabolite of the neurotoxin 1‐methyl‐4‐phenyl‐1,2,5,6‐tetrahydropyridine. Life Sci. 36:2503‐2508.
   Oiwa, Y., Eberling, J.L., Nagy, D., Pivirotto, P., Emborg, M.E., and Bankiewicz, K.S. 2003. Overlesioned hemiparkinsonian nonhuman primate model: Correlation between clinical, neurochemical and histochemical changes. Front. Biosci. 8:A155‐A166.
   Pate, B.D., Kawamata, T., Yamada, T., Mcgeer, E.G., Hewitt, K.A., Snow, B.J., Ruth, T.J., and Calne, D.B. 1993. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann. Neurol. 34:331‐338.
   Paxinos, G. and Watson, C. 1986. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.
   Perese, D.A., Ulman, J., Viola, J., Ewing, S.E., and Bankiewicz, K.S. 1989. A 6‐hydroxydopamine‐induced selective parkinsonian rat model. Brain Res. 494:285‐293.
   Ricaurte, G.A., Irwin, I., Forno, L.S., DeLanney, L.E., Langston, E., and Langston, J.W. 1987. Aging and 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced degeneration of dopaminergic neurons in the substantia nigra. Brain Res. 403:43‐51.
   Sauer, H.W. and Oertel, H. 1994. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6‐hydroxydopamine—A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401‐415.
   Schmidt, M.J., Sawyer, B.D., Perry, K.W., Fuller, R.W., Foreman, M.M., and Ghetti, B. 1982. Dopamine deficiency in the weaver mutant mouse. J. Neurosci. 2:376‐380.
   Schneider, J.S. 1989. Levodopa‐induced dyskinesias in parkinsonian monkeys: Relationship to extent of nigrostriatal damage. Pharmacol. Biochem. Behav. 34:193‐196.
   Schneider, J.S. and Kovelowski, C.J. 1990. Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res. 519:122‐128.
   Schultz, W. 1982. Depletion of dopamine in the striatum as an experimental model of parkinsonism: Direct effects and adaptive mechanisms. Prog. Microbiol. 18:121‐166.
   Sundstrom, E., Fredriksson, A., and Archer, T. 1990. Chronic neurochemical and behavioral changes in MPTP‐lesioned C56BL/6 mice: A model for Parkinson's disease. Brain Res. 528:181‐188.
   Thomas, J., Wang, J., Takubo, H., Sheng, J.G., Dejesus, S., and Bankiewicz, K.S. 1994. A 6‐hydroxydopamine‐induced selective parkinsonian rat model: Further biochemical and behavioral characterization. Exp. Neurol. 126:159‐167.
   Ungerstedt, U. 1971a. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand. Suppl. 367:51‐68.
   Ungerstedt, U. 1971b. Postsynaptic supersensitivity after 6‐hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. Suppl. 367:69‐93.
   Ungerstedt, U. and Arbuthnott, G.W. 1970. Quantitative recording of rotational behavior in rats after 6‐hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24:485‐493.
   Wang, J., Skirboll, S., Aigner, T.G., Saunders, R.C., Hsiao, J. and Bankiewicz, K.S. 1990. Methodology of microdialysis of neostriatum in hemiparkinsonian nonhuman primates. Exp. Neur. 110:181‐186.
   Yang, S.C., Markey, S.P., Bankiewicz, K.S., London, W.T., and Lunn, G. 1988. Recommended safe practices for using the neurotoxin MPTP in animal experiments. Lab. Anim. Sci. 38:563‐567.
   Zigmond, M.J. and Strickler, E.M. 1989. Animal models of parkinsonism using selective neurotoxins: Clinical and basic implications. Int. Rev. Neurosci. 31:1‐79.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library