Fluorescence Correlation Spectroscopy: Detecting and Interpreting the Mobility of Transmembrane Proteins In Vivo

Nina Malchus1

1 German Cancer Research Center, Heidelberg, Germany
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 2.19
DOI:  10.1002/0471140856.tx0219s48
Online Posting Date:  May, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Mobility of proteins is crucial for their functionality. Fluorescence correlation spectroscopy (FCS) is a sensitive tool for assessing dynamics in vivo. It can reveal properties of diffusing proteins, as well as of the surrounding medium. Hence, subtle changes in the dynamics after treatment with toxic substances can be visualized. On biological membranes, the high concentration of transmembrane and peripheral membrane proteins leads to molecular crowding, and thus to a change in the diffusion behavior, i.e., to anomalous diffusion of membrane proteins. Presented here is a protocol for conducting and evaluating FCS measurements of membrane proteins before and after treatment. Curr. Protoc. Toxicol. 48:2.19.1‐2.19.16. © 2011 by John Wiley & Sons, Inc.

Keywords: fluorescence correlation spectroscopy; anomalous diffusion; membrane proteins

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: FCS Sample Preparation
  • Basic Protocol 2: FCS Data Acquisition
  • Basic Protocol 3: FCS Data Analysis
  • Basic Protocol 4: Data Analysis Using XMGrace
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: FCS Sample Preparation

  Materials
  • Cells of interest in culture
  • Transfection reagent (e.g., Fugene 6, Roche Diagnostics)
  • Plasmid with GFP‐fusion protein of interest
  • Serum‐free cell culture medium appropriate to the cells being studied
  • Live‐imaging medium: appropriate standard cell culture medium without phenol red (which gives a high fluorescent background), optionally with antibiotics and serum (for longer imaging times), and buffered with HEPES, if necessary
  • 2‐well Lab‐Tek chambers (Nunc)
  • Additional reagents and equipment for growing mammalian cells in culture (Phelan, ), preparing cell culture medium (Sato and Kan, ), and preparing and transfecting plasmids (see appendix 3A)

Basic Protocol 2: FCS Data Acquisition

  Materials
  • Distilled water
  • Sample to be tested in Lab‐Tek chambers ( protocol 1)
  • Leica SP2‐TCS confocal laser scanning microscope with
    • Argon laser (488‐nm excitation)
    • Software
    • 63× water objective (HCX PL APO 63× 1.2W CORR)
  • Climate box (Life Imaging Services)
  • Mercury arc lamp
  • ISS FCS unit and software (ISS Vista) (Leica Microsystems)
  • External avalanche photodiode (APD) for single‐photon detection with a 500 to 530 nm bandpass filter (Leica Microsystems)

Basic Protocol 3: FCS Data Analysis

  Materials
  • XMGrace (http://plasma‐gate.weizmann.ac.il/Grace)
  • PC with operating system capable of running XMGrace (see http://plasma‐gate.weizmann.ac.il/Grace)
  • Autocorrelation data from the FCS measurements, saved as *.csv files
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bouchaud, J.P. and Georges, A. 1990. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195:127‐293.
   Ellis, R.J. and Minton, A.P. 2003. Cell biology: Join the crowd. Nature 425:27‐28.
   Enderlein, J., Gregor, I., Patra, D., and Fitter, J. 2004. Art and artifacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5:155‐161.
   Griffiths, G., Warren, G., Quinn, P., Mathieu‐Costello, O., and Hoppeler, H. 1984. Density of newly synthesized plasma membrane proteins in intracellular membranes. i. Stereological studies. J. Cell. Biol. 98:2133‐2141.
   Guigas, G., Kalla, C., and Weiss, M. 2007. The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett. 581:5094‐5098.
   Haupts, U., Maiti, S., Schwille, P., and Webb, W.W. 1998. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95:13573‐13578.
   Magde, D., Elson, E.L., and Webb, W.W. 1974. Fluorescence correlation spectroscopy. ii. An experimental realization. Biopolymers 13:29‐61.
   Malchus, N. and Weiss, M. 2009. Elucidating anomalous protein diffusion in living cells with fluorescence correlation spectroscopy‐facts and pitfalls. J. Fluoresc. 20:19‐26
   Phelan, M.C. 2007. Basic techniques for mammalian cell tissue culture. Curr. Protoc. Cell Biol. 36:1.1.1‐1.1.18.
   Quinn, P., Griffiths, G., and Warren, G. 1984. Density of newly synthesized plasma membrane proteins in intracellular membranes ii. Biochemical studies. J. Cell. Biol. 98:2142‐2147.
   Rigler, R. 2001. Fluorescence Correlation Spectroscopy. Springer‐Verlag, Berlin.
   Ritchie, K., Shan, X.Y., Kondo, J., Iwasawa, K., Fujiwara, T., and Kusumi, A. 2005. Detection of non‐Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88:2266‐2277.
   Sato, J.D. and Kan, M. 1998. Media for culture of mammalian cells. Curr. Protoc. Cell Biol. 1.2.1‐1.2.15
   Saffman, P.G. and Delbrueck, M. 1975. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U.S.A. 72:3111‐3113.
   Saxton, M.J. 1994. Anomalous diffusion due to obstacles: A Monte Carlo study. Biophys. J. 66:394‐401.
   Saxton, M.J. 1996. Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. 70:1250‐1262.
   Schuetz, G.J., Schindler, H., and Schmidt, T. 1997. Single‐molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73:1073‐1080.
   Smith, P.R., Morrison, I.E., Wilson, K.M., Fernández, N., and Cherry, R.J. 1999. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys. J. 76:3331‐3344.
   Weiss, M., Hashimoto, H., and Nilsson, T. 2003a. Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84:4043‐4052.
   Weiss, M., Elsner, M., Kartberg, F., and Nilsson, T. 2003b. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87:3518‐3524.
   Wohland, T., Rigler, R., and Vogel, H. 2001. The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80:2987‐2999.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library