Determination of Metabolic Viability and Cell Mass Using a Tandem Resazurin/Sulforhodamine B Assay

Filomena S.G. Silva1, Irina G. Starostina1, Vilena V. Ivanova2, Albert A. Rizvanov2, Paulo J. Oliveira3, Susana P. Pereira4

1 These authors should be considered co–first authors, 2 Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russia, 3 Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal, 4 Department of Life Sciences, School of Sciences and Technology, University of Coimbra, Coimbra, Portugal
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 2.24
DOI:  10.1002/cptx.1
Online Posting Date:  May, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The identification of rapid, reliable, and highly reproducible biological assays that can be standardized and routinely used in preclinical tests constitutes a promising approach to reducing drug discovery costs and time. This unit details a tandem, rapid, and reliable cell viability method for preliminary screening of chemical compounds. This assay measures metabolic activity and cell mass in the same cell sample using a dual resazurin/sulforhodamine B assay, eliminating the variation associated with cell seeding and excessive manipulations in assays that test different cell samples across plates. The procedure also reduces the amount of cells, test compound, and reagents required, as well as the time expended in conventional tests, thus resulting in a more confident prediction of toxic thresholds for the tested compounds. © 2016 by John Wiley & Sons, Inc.

Keywords: high throughput; human skin fibroblasts; preclinical tests; toxicity evaluation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Cell Culture of Fibroblasts
  • Basic Protocol 2: Resazurin Assay for Cell Viability Assessment
  • Basic Protocol 3: Sulforhodamine B Colorimetric Assay
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Cell Culture of Fibroblasts

  Materials
  • BJ skin fibroblasts cell line (ATCC, cat. no CRL‐2522)
  • Phosphate buffered saline (PBS; see recipe)
  • 0.05% trypsin‐EDTA (Life Technologies, cat. no 25300‐062)
  • Growth medium (see recipe)
  • 100‐cm2 cell culture dishes
  • Cell incubator, at 37°C with 5% CO 2 atmosphere
  • Inverted microscope
  • 15‐ml disposable conical polypropylene centrifuge tubes (e.g., Corning Falcon)

Basic Protocol 2: Resazurin Assay for Cell Viability Assessment

  Materials
  • Cells seeded in 48‐well plates (see protocol 1)
  • Resazurin solution (see recipe)
  • Phosphate‐buffered saline (PBS; see recipe)
  • Growth medium (see recipe)
  • Microplate reader
  • Computer running MS Excel and GraphPad Prism or SPSS (IBM)

Basic Protocol 3: Sulforhodamine B Colorimetric Assay

  Materials
  • Cells seeded in 48‐well plates, after performing resazurin assay for all time points (see protocol 2)
  • Phosphate‐buffered saline (PBS)
  • 1% (v/v) acetic acid in methanol (see recipe)
  • SRB solution (see recipe)
  • 1% (v/v) acetic acid in MilliQ‐purified H 2O
  • 10 mM Tris‐NaOH, pH 10 (see recipe)
  • 96‐well plates suitable for spectrometry
  • Orbital plate shaker
  • Microplate reader
  • Computer running MS Excel and GraphPad Prism or SPSS (IBM)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abdoli, N., Azarmi, Y., and Eghbal, M.A. 2015. Mitigation of statins‐induced cytotoxicity and mitochondrial dysfunction by L‐carnitine in freshly‐isolated rat hepatocytes. Res. Pharm. Sci. 10:143‐151.
  Adams, C.P. and Brantner, V.V. 2006. Estimating the cost of new drug development: Is it really 802 million dollars? Health Aff. 25:420‐428. doi: 10.1377/hlthaff.25.2.420.
  Ahmed, S.A., Gogal, R.M., Jr., and Walsh, J.E. 1994. A new rapid and simple non‐radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 170:211‐224. doi: 10.1016/0022‐1759(94)90396‐4.
  Allen, D.D., Caviedes, R., Cardenas, A.M., Shimahara, T., Segura‐Aguilar, J., and Caviedes, P.A. 2005. Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev. Ind. Pharm. 31:757‐768. doi: 10.1080/03639040500216246.
  Ambrosi, G., Ghezzi, C., Sepe, S., Milanese, C., Payan‐Gomez, C., Bombardieri, C.R., Armentero, M.T., Zangaglia, R., Pacchetti, C., Mastroberardino, P.G., and Blandini, F. 2014. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochim. Biophys. Acta 1842:1385‐1394. doi: 10.1016/j.bbadis.2014.05.008.
  Bopp, S.K. and Lettieri, T. 2008. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol. 8:8. doi: 10.1186/1471‐2210‐8‐8.
  Brodniewicz, T. and Grynkiewicz, G. 2010. Preclinical drug development. Acta Pol. Pharm. 67:578‐585.
  Connolly, G.P. 1998. Fibroblast models of neurological disorders: Fluorescence measurement studies. Trends Pharmacol. Sci. 19:171‐177. doi: 10.1016/S0165‐6147(98)01202‐4.
  de Fries, R. and Mitsuhashi, M. 1995. Quantification of mitogen induced human lymphocyte proliferation: Comparison of alamarBlue assay to 3H‐thymidine incorporation assay. J. Clin. Lab. Anal. 9:89‐95. doi: 10.1002/jcla.1860090203.
  Erb, R.E. and Ehlers, M.H. 1950. Resazurin reducing time as an indicator of bovine semen capacity. J. Dairy Sci. 33:853‐864. doi: 10.3168/jds.S0022‐0302(50)91981‐3.
  Fairbanks, L.D., Jacomelli, G., Micheli, V., Slade, T., and Simmonds, H.A. 2002. Severe pyridine nucleotide depletion in fibroblasts from Lesch‐Nyhan patients. Biochem. J. 366:265‐272. doi: 10.1042/bj20020148.
  Fields, R.D. and Lancaster, M.V. 1993. Dual‐attribute continuous monitoring of cell proliferation/cytotoxicity. Am. Biotechnol. Lab. 11:48‐50.
  Garrido‐Maraver, J., Cordero, M.D., Monino, I.D., Pereira‐Arenas, S., Lechuga‐Vieco, A.V., Cotan, D., De la Mata, M., Oropesa‐Avila, M., De Miguel, M., Bautista Lorite, J., Rivas Infante, E., Alvarez‐Dolado, M., Navas, P., Jackson, S., Francisci, S., and Sanchez‐Alcazar, J.A. 2012. Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. Br. J. Pharmacol. 167:1311‐1328. doi: 10.1111/j.1476‐5381.2012.02086.x.
  Kato, Y., Windle, J.J., Koop, B.A., Mundy, G.R., and Bonewald, L.F. 1997. Establishment of an osteocyte‐like cell line, MLO‐Y4. J. Bone Miner. Res. 12:2014‐2023.
  Kato, Y., Boskey, A., Spevak, L., Dallas, M., Hori, M., and Bonewald, L.F. 2001. Establishment of an osteoid preosteocyte‐like cell MLO‐A5 that spontaneously mineralizes in culture. J. Bone Miner. Res. 16:1622‐1633.
  Kerkvliet, G.J. 1990. Drug discovery screen adapts to changes. J. Natl. Cancer Inst. 82:1087‐1088. doi: 10.1093/jnci/82.13.1087.
  Lee, J.K., Kim, D.B., Kim, J.I., and Kim, P.Y. 2000. In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. Toxicol. In Vitro 14:345‐349. doi: 10.1016/S0887‐2333(00)00028‐X.
  Mocali, A., Della Malva, N., Abete, C., Mitidieri Costanza, V.A., Bavazzano, A., Boddi, V., Sanchez, L., Dessi, S., Pani, A., and Paoletti, F. 2014. Altered proteolysis in fibroblasts of Alzheimer patients with predictive implications for subjects at risk of disease. Int. J. Alzheimer's Dis. 2014:520152. doi: 10.1155/2014/520152.
  Moreira, A.C., Branco, A.F., Sampaio, S.F., Cunha‐Oliveira, T., Martins, T.R., Holy, J., Oliveira, P.J., and Sardao, V.A. 2014. Mitochondrial apoptosis‐inducing factor is involved in doxorubicin‐induced toxicity on H9c2 cardiomyoblasts. Biochim. Biophys. Acta 1842:2468‐2478. doi: 10.1016/j.bbadis.2014.09.015.
  Nguyen, K.V. 2014. Epigenetic regulation in amyloid precursor protein and the Lesch‐Nyhan syndrome. Biochem. Biophys. Res. Commun. 446:1091‐1095. doi: 10.1016/j.bbrc.2014.03.062.
  Niles, A.L., Moravec, R.A., and Riss, T.L. 2008. Update on in vitro cytotoxicity assays for drug development. Expert Opin. Drug Discov. 3:655‐669. doi: 10.1517/17460441.3.6.655.
  O'Brien, J., Wilson, I., Orton, T., and Pognan, F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267:5421‐5426. doi: 10.1046/j.1432‐1327.2000.01606.x.
  Papazisis, K.T., Geromichalos, G.D., Dimitriadis, K.A., and Kortsaris, A.H. 1997. Optimization of the sulforhodamine B colorimetric assay. J. Immunol. Methods 208:151‐158. doi: 10.1016/S0022‐1759(97)00137‐3.
  Phelan, M.C. 2007. Techniques for mammalian cell tissue culture. Curr. Protoc. Toxicol. 33:A.3B.1‐A.3B.18, doi: 10.1002/0471140856.txa03bs33.
  Riss, T.L., Moravec, R.A., Niles, A.L., Benink, H.A., Worzella, T.J., and Minor, L. 2004. Cell viability assays. In Assay Guidance Manual (G.S. Sittampalam, N.P. Coussens, H. Nelson, M. Arkin, D. Auld, C. Austin, B. Bejcek, M. Glicksman, J. Inglese, P.W. Iversen, Z. Li, J. McGee, O. McManus, L. Minor, A. Napper, J.M. Peltier, T. Riss, O.J. Trask, Jr., and J. Weidner, eds.). Eli Lilly & Company and the National Center for Advancing Translational Sciences (U.S.), Bethesda, Maryland.
  Sardao, V.A., Oliveira, P.J., Holy, J., Oliveira, C.R., and Wallace, K.B. 2009. Doxorubicin‐induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother. Pharmacol. 64:811‐827. doi: 10.1007/s00280‐009‐0932‐x.
  Serafim, T.L., Matos, J.A., Sardao, V.A., Pereira, G.C., Branco, A.F., Pereira, S.L., Parke, D., Perkins, E.L., Moreno, A.J., Holy, J., and Oliveira, P.J. 2008. Sanguinarine cytotoxicity on mouse melanoma K1735‐M2 cells—Nuclear vs. mitochondrial effects. Biochem. Pharmacol. 76:1459‐1475. doi: 10.1016/j.bcp.2008.07.013.
  Serafim, T.L., Carvalho, F.S., Marques, M.P., Calheiros, R., Silva, T., Garrido, J., Milhazes, N., Borges, F., Roleira, F., Silva, E.T., Holy, J., and Oliveira, P.J. 2011. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol. 24:763‐774. doi: 10.1021/tx200126r.
  Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R. 1990. New colorimetric cytotoxicity assay for anticancer‐drug screening. J. Natl. Cancer Inst. 82:1107‐1112. doi: 10.1093/jnci/82.13.1107.
  Spryszynska, S., Smok‐Pieniazek, A., Ferlinska, M., Roszak, J., Nocun, M., and Stepnik, M. 2015. The influence of ATM, ATR, DNA‐PK inhibitors on the cytotoxic and genotoxic effects of dibenzo[def,p]chrysene on human hepatocellular cancer cell line HepG2. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 791:12‐24. doi: 10.1016/j.mrgentox.2015.07.008.
  Taylor, D. 2015. The pharmaceutical industry and the future of drug development. In Pharmaceuticals in the Environment (R.E. Hester and R.M. Harrison, eds.) pp. 1‐33. Royal Society of Chemistry Press, London.
  Valente, A.X., das Neves, R.P., and Oliveira, P.J. 2012. Epigenetic engineering to reverse the Parkinson's expression state. Parkinsonism Relat. Disord. 18:717‐721. doi: 10.1016/j.parkreldis.2012.04.018.
  Voytik‐Harbin, S.L., Brightman, A.O., Waisner, B., Lamar, C.H., and Badylak, S.F. 1998. Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts. In Vitro Cell. Dev. Biol. Anim. 34:239‐246. doi: 10.1007/s11626‐998‐0130‐x.
  Wang, L., Ai, W., Zhai, Y., Li, H., Zhou, K., and Chen, H. 2015. Effects of Nano‐CeO(2) with different nanocrystal morphologies on cytotoxicity in HepG2 cells. Int. J. Environ. Res. Public Health 12:10806‐10819. doi: 10.3390/ijerph120910806.
  Yang, S., Zhang, K.Y., Kariawasam, R., Bax, M., Fifita, J.A., Ooi, L., Yerbury, J.J., Nicholson, G.A., and Blair, I.P. 2015. Evaluation of skin fibroblasts from amyotrophic lateral sclerosis patients for the rapid study of pathological features. Neurotoxic. Res. 28:138‐146. doi: 10.1007/s12640‐015‐9532‐1.
  Zumpe, C., Bachmann, C.L., Metzger, A.U., and Wiedemann, N. 2010. Comparison of potency assays using different read‐out systems and their suitability for quality control. J. Immunol. Methods 360:129‐140. doi: 10.1016/j.jim.2010.06.019.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library