Detection of Metabolites Using High‐Performance Liquid Chromatography and Mass Spectrometry

Thomas D. McClure1

1 Novartis Agricultural Discovery Institute, Inc., San Diego, California
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 4.4
DOI:  10.1002/0471140856.tx0404s03
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit provides a discussion of high‐pressure liquid chromatography‐atmospheric pressure ionization mass spectrometry (LC‐API‐MS) for separation, detection, and identification of products from xenobiotic metabolism. It includes an introduction and important technical information for electrospray and atmospheric pressure chemical ionization methods as well as scan modes. Emphasis has been placed on each method as related to phase I and phase II metabolite identification and there are listings of specific applications (and references) to reduce method development time.

PDF or HTML at Wiley Online Library

Table of Contents

  • Instrumental Considerations
  • Combined HPLC‐MS Methodology
  • HPLC‐MS and HPLC‐MS/MS of Metabolites
  • Summary
  • Future Directions
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Baillie, T.A. 1992. Advances in the application of mass spectrometry to studies of drug metabolism, pharmacokinetics and toxicology. Int. J. Mass Spectrom. Ion Processes. 118‐119:289‐314.
   Baillie, T.A. 1994. The role of LC‐ionspray MS/MS in studies of drug metabolism and toxicology. In Proceedings, The 42nd ASMS Conference on Mass Spectrometry and Allied Topics, May 29, 1994, p. 862. American Society for Mass Spectrometry, Chicago, Ill.
   Baillie, T.A. and Davis, M. 1993. Mass spectrometry in the analysis of glutathione conjugates. Biol. Mass Spectrom. 22:319‐325.
   Beattie, I.G. and Blake, T.J.A. 1989. The structural identification of drug metabolites by thermospray liquid chromatography/mass spectrometry. Biomed. Environ. Mass Spectrom. 18:872‐877.
   Borel, A.G. and Abbott, F.S. 1995. Characterization of novel isocyanate‐derived metabolites of the formamide N‐formylamphetamine with the combined use of electrospray mass spectrometry and stable isotope methodology. Chem. Res. Toxicol. 8:891‐899.
   Brunnee, C. 1982. New instrumentation in mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 45:3‐38.
   Chapman, J.R. 1993. Practical Organic Mass Spectrometry: A Guide for Chemical and Biochemical Analysis, 2nd ed. John Wiley & Sons, Chichester.
   Chervet, J.P., Ursem, M., and Salzmann, J.P. 1996. Instrumental requirements for nanoscale liquid chromatography. Anal. Chem. 68:1507‐1512.
   Dear, G.J., Harrelson, J.C., Jones, A.E., Johnson, T.E., and Pleasance, S. 1995. Identification of urinary and biliary conjugated metabolites of the neuromuscular blocker 51W89 by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 9:1457‐1464.
   Dodds, H.M., Taylor, P.J., Cannell, G.R., and Pond, S.M. 1997. A high‐performance liquid chromatography‐electrospray‐tandem mass spectrometry analysis of cortisol and metabolites in placental perfusate. Anal. Biochem. 247:342‐347.
   Draper, W.M., Brown, F.R., Bethem, R., and Mille, M.J. 1989. Thermospray mass spectrometry and tandem mass spectrometry of polar, urinary metabolites and metabolic conjugates. Biomed. Environ. Mass Spectrom. 18:767‐774.
   Fujiwara, H., Chott, R.C., and Solsten, R.T. 1992. Utility of liquid chromatography/fast atom bombardment mass spectrometry and liquid chromatography/thermospray mass spectrometry for structure identification of metabolites of a fluorinated herbicide. Biol. Mass Spectrom. 21:431‐440.
   Gaskell, S.J. 1997. Electrospray: Principles and practice. J. Mass Spectrom. 32:677‐687.
   Hoja, H., Marquet, P., Verneuil, B., Lotfi, H., Penicaut, B., and Lachatre, G. 1997. Applications of liquid chromatography‐mass spectrometry in analytical toxicology: A review. J. Anal. Toxicol. 21:116‐126.
   Jackson, P.J., Brownsill, R.D., Taylor, A.R., and Walther, B. 1995. Use of electrospray ionization and neutral loss liquid chromatography/tandem mass spectrometry in drug metabolism studies. J. Mass Spectrom. 30:446‐451.
   Johnston, J.J., Draper, W.M., and Stephens, R.D. 1991. LC‐MS compatible HPLC separation for xenobiotics and their phase I and phase II metabolites: Simultaneous anion exchange and reversed‐phase chromatography. J. Chromatogr. Sci. 29:511‐516.
   Julien‐Larose, C., Voirin, P., Mas‐Chamberlin, C., and Dufour, A. 1991. Use of particle beam liquid chromatography‐electron impact mass spectrometry for structure elucidation of oxodipine and three of its metabolites. J. Chromatogr. 562:39‐45.
   Kebarle, P. and Yeunghaw, H. 1997. On the mechanism of electrospray mass spectrometry. In Electrospray Ionization Mass Spectrometry (R.B. Coleed, ed.) pp. 3‐63. John Wiley & Sons, New York.
   Kondo, F., Ikai, Y., Oka, H., Okumura, M., Ishikawa, N., Harada, K., Matsuura, K., Murata, H., and Suzuki, M. 1992. Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins. Chem. Res. Toxicol. 5:591‐596.
   Linscheid, M. 1992. LC‐MS for toxicological and environmental analysis: Recent developments. Int. J. Environ. Anal. Chem. 49:1‐14.
   Neue, U.D. 1997. HPLC columns, theory, technology and practice. Wiley‐VCH, New York.
   Niessen, W.M.A. and Van der Greef, J. 1992. Liquid Chromatography‐Mass Spectrometry. Marcel Dekker, New York.
   Ning, S. and Xu, X. 1997. Reductive metabolism of 4‐nitrobiphenyl by rat liver fraction. Carcinogenesis. 18:1233‐1240.
   Parkinson, A. 1996. Biotransformation of xenobiotics. In Casarett & Doull's Toxicology, Vol. 5 (C.D.Klaassen, ed.) pp. 113‐186. McGraw‐Hill, New York.
   Poon, G.K., Bloomer, J.W., Clarke, S.E., and Maltas, J. 1996. Rapid screening of taxol metabolites in human microsomes by liquid chromatography/electrospray ionization‐mass spectrometry. Rapid Commun. Mass Spectrom. 10:1165‐1168.
   Rashed, M.S., Pearson, P.G., Han, D.H., and Baillie, T.A. 1989. Application of liquid chromatography/thermospray mass spectrometry to studies on the formation of glutathione and cysteine conjugates from monomethylcarbamate metabolites of bambuterol. Rapid Commun. Mass Spectrom. 3:360‐363.
   Rossato, P.S., Scandola, M., Pugnaghi, F., and Grossi, P. 1992. Ether and ester glucuronic acid conjugates of lacidipine metabolites: Mass spectrometric differentiation using thermospray and particle beam techniques. Org. Mass Spectrom. 27:1261‐1265.
   Schaefer, W.H., Goalwin, A., Dixon, F., Hwang, B., Killmer, L., and Kuo, G. 1992. Structural determination of glucuronide conjugates and a carbamoyl glucuronide conjugate of carvedilol: Use of acetylation reactions as an aid to determine positions of glucuronidation. Biol. Mass Spectrom. 21:179‐188.
   Slatter, G., Davis, M.R., Deog‐Hwa, H., Pearson, P.G., and Baillie, T.A. 1993. Studies on the metabolic fate of ceracemide, an experimental antitumor agent in the rat. Evidence for the release of methyl isocyanate in vivo. Chem. Res. Toxicol. 6:335‐340.
   Snyder, L., Kirkland, J.J., and Glajch, J.L. 1997. Practical HPLC Method Development, 2nd ed. John Wiley & Sons, New York.
   Stillwell, W.G., Kidd, L.C., Wishnok, J.S., Tannenbaum, S.R., and Sinha, R. 1997. Urinary excretion of unmetabolized and phase II conjugates of 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine and 2‐amino‐3,8‐dimethylimidazo[4,5‐f]quinoxaline in humans: Relationship to cytochrome P4501A2 and N‐acetyltransferase activity. Cancer Res. 57:3457‐3464.
   Sun, E.L., Fennstra, K.L., Bell, F.P., Sanders, P.E., Slatter, J.G., and Ulrich, R.G. 1996. Biotransformation of lifibrol (U‐83860) to mixed glyceride metabolites by rat and human hepatocytes in primary culture. Drug Metab. Dispos. 24:221‐231.
   Takahara, E., Nagata, O., Kato, H., Ohta, S., and Hirobe, M. 1994. Analysis of urinary and biliary metabolites of (+)‐4‐[4‐(4‐methylphenyl)phenylmethoxy‐1‐piperidinyl]butyric acid in rats by liquid chromatography‐frit fast atom bombardment mass spectrometry. J. Chromatogr. 658:154‐160.
   Tang, W. and Abbott, F.S. 1996. Characterization of thiol‐conjugated metabolites of 2‐propylpent‐4‐enoic acid (4‐ene VPA),a toxic metabolite of valproic acid, by electrospray tandem mass spectrometry. J. Mass Spectrom. 31:926‐936.
   Taylor, L.C.E., Johnson, R.L., St. John‐Williams, L., Johnson, R., and Chang, S.Y. 1994. The use of low‐energy collisionally activated dissociation negative‐ion tandem mass spectrometry for the characterization of dog and human urinary metabolites of the drug BW 1370U87. Rapid Commun. Mass Spectrom. 8:265‐273.
   Uchida, T., Usui, T., Teramura, T., Watanabe, T., and Higuchi, S. 1993. Metabolic N‐demethylation of 1,3‐bis[[1‐cycloheptyl‐3‐(P‐dimethylaminophenyl)ureido]methyl]benzene dihydrochloride, a novel acyl‐coenzyme A:cholesterol acyltransferase inhibitor. Drug Metab. Dispos. 21:524‐529.
   van Baar, B.L.M. 1996. Ionization methods in LC‐MS and LC‐MS‐MS (TSP, APCI, ESP and cf‐FAB). In Applications of LC‐MS in Environmental Chemistry (D.Barceloed, ed.) pp. 71‐133. Elsevier, Amsterdam.
   Ventura, R., Nadal, T., Alcalde, P., and Segura, J. 1993. Determination of mesocarb metabolites by high‐performance liquid chromatography with UV detection and with mass spectrometry using a particle‐beam interface. J. Chromatogr. 647:203‐210.
   Volmer, D.A. 1996. Multiresidue determination of sulfonamide antibiotics in milk by short‐column chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 10:1615‐1620.
   Volmer, D.A., Mansoori, B., and Locke, S.J. 1997. Study of 4‐quinolone antibiotics in biological samples by short‐column liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal. Chem. 69:4143‐4155.
   Weidolf, L. and Covey, T.R. 1992. Studies on the metabolism of omeprazole in the rat using liquid chromatography/ionspray mass spectrometry and the isotope cluster technique with [34S]omeprazole. Rapid Commun. Mass Spectrom. 6:192‐196.
   Weidolf, L., Karlsson, K.E., and Nilsson, I. 1992. A metabolic route of omeprazole involving conjugation with glutathione identified in the rat. Drug Metab. Dispos. 20:262‐267.
   Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B. 1995. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57:675‐679.
   Wilm, M.S. and Mann, M. 1994. Electrospray and Taylor‐Cone theory: Dole's beam of macromolecules at last. Int. J. Mass Spectrom. Ion Processes 136:167‐180.
   Yamashita, M. and Fenn, J.B. 1984. Electrospray ion source: Another variation on the free‐jet theme. J. Phys. Chem. 88:4451‐4459.
   Zell, M., Husser, C., and Hopfgartner, G. 1997. Column‐switching high‐performance liquid chromatography combined with ion spray tandem mass spectrometry for the simultaneous determination of the platelet inhibitor Ro 44‐3888 and its pro‐drug and precursor metabolite in plasma. J. Mass Spectrom. 32:23‐32.
   Zhang, L., Yoshida, T., Aoki, K., and Kuroiwa, Y. 1991. Metabolism of cinobufagin in rat liver microsomes. Identification of epimerized and deacetylated metabolites by liquid chromatography/mass spectrometry. Drug Metab. Dispos. 19:917‐919.
   Zhang, G.Q., McKay, G., Hubbard, J.W., and Midah, K.K. 1996. Application of electrospray mass spectrometry in the identification of intact glucuronide and sulfate conjugates of clozapine in rat. Xenobiotica. 26:541‐550.
PDF or HTML at Wiley Online Library