Overview of Glutathione Function and Metabolism

Yvonne Will1

1 Oregon State University, Corvallis, Oregon
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 6.1
DOI:  10.1002/0471140856.tx0601s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Glutathione is a key player in reduction processes in the cell. It is responsible for maintaining thiol groups of intracellular proteins by providing reducing power for cysteine, dihydolipoate, CoA, ascorbate, and vitamin E. It also plays a role in reduction of NTPs to dNTPs. Glutathione is also involved in detoxification of endogenous and exogenous compounds, participates in the synthesis of leukotrienes and prostaglandins, serves as a cofactor for various enzymes, stores and transports cysteine, and may be involved in cell cycle regulation and thermotolerance.

PDF or HTML at Wiley Online Library

Table of Contents

  • Glutathione Function
  • Glutathione Synthesis and Turnover
  • Manipulation of Glutathione Content
  • Mitochondrial Glutathione
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Abbott, W.A., Bridges, R.J., and Meister, A. 1984. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney. J. Biol. Chem. 259:15393‐15400.
   Addya, S., Mullick, J., Fang, J.K., and Avadhani, N.G. 1994. Purification and characterization of a hepatic mitochondrial glutathione S‐transferase exhibiting immunochemical relationship to the alpha‐class of cytosolic isoenzymes. Arch. Biochem. Biophys. 310:82‐88.
   Anderson, M.E., Powrie, F., Puri, R.N., and Meister, A. 1985. Glutathione monoethyl ester: Preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239:538‐548.
   Aw, T.Y., Wierzbicka, G., and Jones, D.P. 1991. Oral glutathione increases tissue glutathione in vivo. Chem. Biol. Interact. 80:89‐97.
   Baba, A., Lee, E., Matsuda, T., Kihara, T., and Iwata, H. 1978. Reversible inhibition of adenylate cyclase activity of rat brain caudate nucleus by oxidized glutathione. Biochem. Biophys. Res. Commun. 85:1204‐1210.
   Babson, J.R. and Reed, D.J. 1978. Inactivation of glutathione reductase by 2‐chloroethyl nitrosourea‐derived isocyanates. Biochem. Biophys. Res. Commun. 83:754‐762.
   Beatrice, M.C., Stiers, D.L., and Pfeiffer, D.R. 1984. The role of glutathione in the retention of Ca2+ by liver mitochondria. J. Biol. Chem. 259:1279‐1287.
   Bellomo, G. and Orrenius, S. 1985. Altered thiol and calcium homeostasis in oxidative hepatocellular injury. Hepatology 5:876‐882.
   Bernardi, P. 1992. Modulation of the mitochondrial cyclosporin A‐sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J. Biol. Chem. 267:8834‐8839.
   Boyland, E. and Chasseaud, L.F. 1969a. Glutathione S‐aralkyltransferase. Biochem. J. 115:985‐991.
   Boyland, E. and Chasseaud, L.F. 1969b. The role of glutathione and glutathione S‐transferases in mercapturic acid biosynthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 32:173‐219.
   Cappel, R.E. and Gilbert, H.F. 1993. Oxidative inactivation of 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase and subunit cross‐linking involve different dithiol/disulfide centers. J. Biol. Chem. 268:342‐348.
   Carbonera, D. and Azzone, G.F. 1988. Permeability of inner mitochondrial membrane and oxidative stress. Biochim. Biophys. Acta 943:245‐255.
   Commandeur, J.N., Stijntjes, G.J., and Vermeulen, N.P. 1995. Enzymes and transport systems involved in the formation and disposition of glutathione S‐conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol. Rev. 47:271‐330.
   Constantini, P., Chernyak, B.V., Petronilli, V., and Bernardi, P. 1996. Modulation of mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 271:6746‐6751.
   De‐Rey‐Pailhade, J. 1888a. Sur un corps d'origine organique hydrogenant le soufre a froid. Compte Rendus Hebdomadaire Seances de l 'Academie de Sciences 106:1683‐1684.
   De‐Rey‐Pailhade, J. 1888b Nouvelles recherches physiologiques sur la substance organique hydrogenant le soufre a froid. Compte Rendus Hebdomadaire Seances de l'Academie de Sciences 107:43‐44.
   Dethmers, J.K. and Meister, A. 1981. Glutathione export by human lymphoid cells: Depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl. Acad. Sci. U.S.A. 78:7492‐7496.
   Ding, H. and Demple, B. 1996. Glutathione‐mediated destabilization in vitro of [2Fe‐2S] centers in the SoxR regulatory protein. Proc.Natl. Acad. Aci. U.S.A. 93:9449‐9453.
   Edwards, S. and Westerfeld, W.W. 1952. Blood and liver glutathione during protein deprivation. Proc. Biol. Exp. Med. 79:57‐59.
   Ekloew, L., Moldeus, P., and Orrenius, S. 1984. Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3‐bis(2‐chloroethyl)‐1‐nitrosurea. Eur. J. Biochem. 138:459‐463.
   Eldjarn, L. and Bremer, J. 1962. The inhibitory effect at the hexokinase level of disulphides on glucose metabolism in human erythrocytes. Biochem.J. 84:286‐291.
   Ernest, M.J. and Kim, K.‐H. 1973 Regulation of rat liver glycogen synthetase. J. Biol. Chem. 248:1550‐1555.
   Ernest, M.J. and Kim, K.‐H. 1974. Regulation of rat liver glycogen synthetase D. J. Biol. Chem. 249:5011‐5018.
   Evered, D.F. and Wass, M. 1970. Transport of glutathione across the small intestine of the rat in vitro. Proc. Physiol. Soc. 209:4P‐5P.
   Fernandez‐Checa, J.C., Yi, J.‐R., Garcia‐Ruiz, C., Knezic, Z., Tahara, S.M., and Kaplowitz, N. 1993. Expression of rat liver reduced glutathione transport in Xenopus laevis oocytes. J. Biol. Chem. 268:2324‐2328.
   Flohe, L. and Schlegel, W. 1971. Glutathione peroxidase. IV. Intracellular distribution of the glutathione peroxidase system in the rat liver. Hoppe Seylers Z. Physiol. Chem. 352:1401‐1410.
   Garcia de la Asuncion, J., Millan, A., Pla, R., Bruseghini, L., Esteras, A., Pallardo, F.V., Sastre, J., and Vina, J. 1996. Mitochondrial glutathione oxidation correlates with age‐associated oxidative damage to mitochondrial DNA. FASEB J. 10:333‐338.
   Garcia‐Ruiz, C., Morales, A., Colell, A., Rodes, J., Yi, J.‐R., Kaplowitz, N., and Fernandez‐Checa, J.C. 1995. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. J. Biol. Chem. 270:15946‐15949.
   Garlid, K.D. and Beavis, A.D. 1986. Evidence for the existence of an inner membrane anion channel in mitochondria. Biochim. Biophys. Acta 853:187‐204.
   Ginn‐Pease, M.E. and Whisler, R.L. 1996. Optimal NfκB mediated transcriptional responses in jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem. Biophys. Res. Commun. 226:685‐702.
   Griffith, O.W. and Meister, A. 1985. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. U.S.A. 82:4668‐4672.
   Haenen, G.R. and Bast, A. 1983. Protection against lipid peroxidation by a microsomal glutathione‐dependent labile factor. FEBS Lett. 159:24‐28.
   Hagen, T.M. and Jones, D.P. 1987. Transepithelial transport of glutathione in vascularly perfused small intestine of rat. Am. J. Physiol. 252:G607‐G613.
   Hagen, T.M. and Jones, D.P. 1989. Role of glutathione transport in extrahepatic detoxication. In Glutathione Centennial, Molecular Perspectives and Clinical Applications (N. Taniguchi, T. Higashi, Y. Sakamoto, and A. Meister, eds.) pp. 423‐433. Academic Press, San Diego.
   Hagen, T.M., Aw, T.Y., and Jones, D.P. 1988. Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int. 34:74‐81
   Hahn, R., Wendel, A., and Flohe, L. 1978. The fate of extracellular glutathione in the rat. Biochim. Biophys. Acta 529:324‐337.
   Harris, J.M., Meyer, D.J., Coles, B., and Ketterer, B. 1991. A novel glutathione transferase (13‐13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem. J. 278:137‐141.
   Hinchman, C.A., Matsumoto, H., Simmons, T.W., and Ballatori, N. 1991. Intrahepatic conversion of glutathione conjugate to its mercapturic acid: Metabolism of 1‐chloro‐2,4‐dinitrobenzene in isolated perfused rat and guinea pig livers. J. Biol. Chem. 266:22179‐22185.
   Hoek, J.B. and Rydstrom, J. 1988. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254:1‐10.
   Holmgren, A. 1978. Glutathione‐dependent enzyme reactions of the phage T4 ribonucleotide reductase system. J. Biol. Chem. 253:7424‐7430.
   Holmgren, A. 1979. Glutathione‐dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J. Biol. Chem. 254:3672‐3678.
   Huang, C.S., Anderson, M.E., and Meister, A. 1993. Amino acid sequence and function of the light subunit of rat kidney gamma‐glutamylcysteine synthetase. J. Biol. Chem. 268:20578‐20583.
   Hunjahn, M.K. and Evered, D.F. 1985. Absorption of glutathione from the gastro‐intestinal tract. Biochim. Biophys. Acta 815:184‐188.
   Inoue, M., Shinozuka, S., and Morino, Y. 1986. Mechanism of renal peritubular extraction of plasma glutathione. The catalytic activity of contralumenal g‐glutamyl‐transferase is prerequisite to the apparent peritubular extraction of plasma glutathione. Eur. J. Biochem. 157:605‐609.
   Isaacs, J. and Binkley, F. 1977. Glutathione dependent control of protein disulfide‐sulfhydryl content by subcellular fractions of hepatic tissue. Biochim. Biophys. Acta 497:192‐204.
   Jocelyn, P.C. 1975. Some properties of mitochondrial glutathione. Biochim. Biophys. Acta 369:427‐436.
   Jocelyn, P.C. 1978. The reduction of diamide by rat liver mitochondria and the role of glutathione. Biochem. J. 176:649‐664.
   Kannan, R., Yi, J.‐R., Tang, D., Li, Y., Zlokovic, B.V., and Kaplowitz, N. 1996. Evidence of the existence of a sodium‐dependent glutathione (GSH) transporter. J. Biol. Chem. 271:9754‐9758.
   Kosower, N.S. and Kosower, E.M. 1974. Manifestation and changes in the GSH/GSSG status of biological systems. In Glutathione (L. Flohe, H.C. Benoehr, H. Sies, H.D. Waller, and A. Wendel, eds.) pp. 287‐295. Georg Thieme, Stuttgart, Germany.
  Kosower, N.S., Song, K.R., and Kosower, E.M. 1969a. Glutathione. I. The methyl phenyldiazenecarboxylate (azoester) procedure for intracellular oxidation. Biochim. Biophys. Acta. 192:1‐7.
   Kosower, N.S., Kosower, E.M., Wertheim, B., and Correa, W.S. 1969b. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem. Biophys. Res. Commun. 37:593‐596.
   Kurosawa, K., Hayashi, N., Sato, N., Kamada, T., and Tagawa, K. 1990. Transport of glutathione across the mitochondrial membranes. Biochem. Biophys. Res. Commun. 167:367‐372.
   Lash, L.J. and Jones, D.P. 1984. Renal glutathione transport. Characteristics of the sodium‐dependent system in the basal‐lateral membrane. J. Biol. Chem. 259:14508‐14514.
   Lash, L.H. and Torkatz, J.J. 1990. Oxidative stress in isolated rat renal proximal and distal tubular cells. Am. J. Physiol. 259:F338‐F347.
   Lehninger, A.L., Vercesi, A., and Bababunmi, E.A. 1978. Regulation of Ca2+ release from mitochondria by the oxidation‐reduction state of pyridine nucleotides. Proc. Natl. Acad. Sci. U.S.A. 75:1690‐1694.
   Le‐Quoc, K. and Le‐Quoc, D. 1985. Crucial role of sulfhydryl groups in the mitochondrial inner membrane structure. J. Biol. Chem. 260:7422‐7428.
   Liang, C.‐M., Lee, N., Cattell, D., and Liang, S.‐M. 1989. Glutathione regulates interleukin‐2 activity on cytotoxic T‐cells. J. Biol. Chem. 264:13519‐13523.
   Lieberman, M.W., Wiseman, A.L., Shi, Z.Z., Carter, B.Z., Barrios, R., Ou, C.N., Chevez‐Barrios, P., Wang, Y., Habib, G.M., Goodman, J.C., Huang, S.L., Lebovitz, R.M., and Matzuk, M.M. 1996. Growth retardation and cysteine deficiency in gamma‐glutamyl transpeptidase‐deficient mice. Proc. Natl. Acad. Sci. U.S.A. 93:7923‐7926.
   Listowsky, I. 1993. Glutathione S‐transferases: Intracellular binding, detoxication, and adaptive responses. In Hepatic Transport and Bile Secretion: Physiology and Pathophysiology (N. Tavolini and D. Berk, eds.) pp. 397‐405. Raven Press, New York.
   Lu, S.C., Kuhlenkamp, J., Ge, J.‐L., Sun, W.‐M., and Kaplowitz, N. 1994. Specificity and directionality of thiol effects on sinusoidal glutathione transport in rat liver. Mol. Pharmacol. 46:578‐585.
   Mannervik, B. and Danielson, U.H. 1988. Glutathione transferases—structure and catalytic activity. CRC Crit. Rev. Biochem. 23:283‐337.
   Martenson, J., Jain, A., and Meister, A. 1990. Glutathione is required for intestinal function. Proc. Natl. Acad. Sci. U.S.A. 87:1715‐1719.
   McGivan, J.D. and Pastor‐Anglada, M. 1994. Regulatory and molecular aspects of mammalian amino acid transport. Biochem. J. 299:321‐334.
   McIntyre, T.M. and Curthoys, N.P. 1980. The interorgan metabolism of glutathione. Int. J. Biochem. 12:545‐551.
   McKernan, T.B., Woods, E.B., and Lash, L.H. 1991. Uptake of glutathione by renal cortical mitochondria. Arch. Biochem. Biophys. 288:653‐663.
   Meister, A. 1983. Metabolism and transport of glutathione and other γ‐glutamyl compounds. In Functions of Glutathione—Biochemical, Physiological and Toxicological and Clinical Aspects (A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, eds.) pp. 1‐22. Raven Press, New York.
   Meister, A. 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; application in research and therapy. Pharmacol. Ther. 51:155‐194.
   Meister, A. and Anderson, M.E. 1983. Glutathione. Annu. Rev. Biochem. 52:711‐760.
   Meister, A. and Larsson, A. 1989. Glutathione synthetase deficiency and other disorders of the γ‐glutamyl cycle. In The Metabolic Basis of Inherited Disorders (C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, eds.) pp. 855‐568. McGraw‐Hill, New York.
   Meredith, M.J. and Reed, D.J. 1982. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J. Biol. Chem. 257:3747‐3753.
   Meredith, M.J. and Reed, D.J. 1983. Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3‐bis(2‐chloroethyl)‐1‐nitrosourea (BCNU). Biochem. Pharmacol. 32:1383‐1388.
   Modig, H. 1968. Cellular mixed disulphides between thiols and proteins, and their possible implication for radiation protection. Biochem. Pharmacol. 17:177‐186.
   Morgenstern, R. and DePierre, J.W. 1983. Microsomal glutathione S‐transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity and amino acid composition. Eur. J. Biochem. 134:591‐597.
   Ness, G.C., McCreery, M.J., Sample, C.E., Smith, M., and Pendleton, L.C. 1985. Sulfhydryl/disulfide forms of rat liver 3‐hydroxy‐3‐methylglutamyl coenzyme A reductase. J. Biol. Chem. 260:16395‐16399.
   Nishino, H. and Ito, A. 1990. Purification and properties of glutathione S‐transferase from outer mitochondrial membrane of rat liver. Biochem. Int. 20:1059‐1066.
   Olafsdottir, K. and Reed, D.J. 1988. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Biochim. Biophys. Acta. 964:377‐382.
   Ormstad, K., Lastbom, T., and Orrenius, S. 1980. Translocation of amino acids and glutathione studies with the perfused kidney and isolated renal cells. FEBS Lett. 112:55‐59.
   Petronilli, V., Constantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P. 1994. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation‐reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J. Biol. Chem. 269:16638‐16642.
   Reed, D.J. 1986. Regulation of reductive processes by glutathione. Biochem. Pharmacol. 35:7‐13.
   Reed, D.J. and Ellis, W.W. 1981. Influence of gamma‐glutamyl transpeptidase inactivation on the status of extracellular glutathione and glutathione conjugates. Adv. Exp. Med. Biol. 136:75‐86.
   Reed, D.J. and Orrenius, S. 1977. The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem. Biophys. Res. Commun. 77:1257‐1264.
   Romero, F.J., Soboll, S., and Sies, H. 1984. Mitochondrial and cytosolic glutathione after depletion by phorone in isolated hepatocytes. Experimentia 40:365‐367.
   Ruoppolo, M., Freedman, R.B., Pucci, P., and Marino, G. 1996. Glutathione‐dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: Catalysis by protein disulfide isomerase. Biochemistry 35:13636‐13646.
   Sandri, G., Panfili, E., and Ernster, L. 1990. Hydrogen peroxide production by monoamine oxidase in isolated rat‐brain mitochondria: Its effect on glutathione levels and Ca2+ efflux. Biochim. Biophys. Acta 1035:300‐305.
   Savage, M.K., Jones, D.P., and Reed, D.J. 1991. Calcium‐ and phosphate‐dependent release and loading of glutathione by liver mitochondria. Arch. Biochem. Biophys. 290:51‐56.
   Schnellmann, R.G. 1991. Renal mitochondrial glutathione transport. Life Sci. 49:393‐398.
   Selwyn, M.J., Dawson, A.P., and Fulton, D.V. 1979. An anion‐conducting pore in the mitochondrial inner membrane. Biochem. Soc. Trans. 7:216‐219.
   Shimazu, T., Tokutake, S., and Usami, M. 1978. Inactivation of phosphorylase phosphatase by a factor from rabbit liver and its chemical characterization as glutathione disulfide. J. Chem. 253:7376‐7382.
   Sies, H., Haussinger, D., and Grosskopf, M. 1974. Mitochondrial nicotinamide nucleotide systems: Ammonium chloride responses and associated metabolic transitions in hemoglobin‐free perfused rat liver. Hoppe Seylers Z. Physiol. Chem. 355:305‐320.
   Smith, C.V., Jones, D.P., Guenther, T.M., Lash, L.H., and Lauterburg, B.H. 1996. Contemporary issues in toxicology. Compartmentation of glutathione: Implications for the study of toxicity and disease. Toxicol. Appl. Pharmacol. 140:1‐12.
   Sorgato, M.C., Keller, B.U., and Stuhmer, W. 1987. Patch‐clamping of the inner mitochondrial membrane reveals a voltage‐dependent ion channel. Nature. 330:498‐500.
   Tietze, F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Application to mammalian blood and other tissues. Anal. Biochem. 27:502‐522.
   Tirmenstein, M.A. and Reed, D.J. 1988. Characterization of glutathione‐dependent inhibition of lipid peroxidation of isolated rat liver nuclei. Arch. Biochem. Biophys. 261:1‐11.
   Torella, C., Ruoppolo, M., Marino, G., and Pucci, P. 1994. Analysis of RNase A refolding intermediates by electrospray/mass spectrometry. FEBS Lett. 352:301‐306.
   Tsan, M.‐F., White, J.E., and Rosano, C.L. 1989. Modulation of endothelial GSH concentrations: Effect of exogenous GSH and GSH monoethyl ester. J. Appl. Physiol. 66:1029‐1034.
   Tschesche, H. and McCartney, H.W. 1981. A new principle of regulation of enzyme activity. Eur. J. Biochem. 120:183‐190.
   Tuboi, S. and Hayasaka, S. 1972. Control of delta‐aminolevulinate synthetase activity in Rhodopseudomonas spheroides. II. Requirement of a disulfide compound for the conversion of the inactive form of fraction I to the active form. Arch. Biochem. Biophys. 150:690‐697.
   Usami, M., Matsushita, H., and Shimazu, T. 1980. Regulation of liver phosphorylase phosphatase by glutathione. J. Biol. Chem. 255:1928‐1931.
   Van Berkel, T.J., Koster, J.F., and Huelsmann, W.C. 1973. Two interconvertible forms of L‐type pyruvate kinase from rat liver. Biochim. Biophys. Acta. 293:118‐124.
   Vignais, P.M. and Vignais, P.V. 1973. Fuscin, an inhibitor of mitochondrial SH‐dependent transport‐linked functions. Biochim. Biophys. Acta. 325:357‐374.
   Vincencini, M.T., Favilli, F., and Iantomasi, T. 1988. Glutathione‐mediated transport across intestinal brush‐border membranes. Biochim. Biophys. Acta. 942:107‐114.
   Visarius, T.M, Putt, D.A., Schare, J.M., Pegouske, D.M., and Lash, L.H. 1996. Pathways of glutathione. Metabolism and transport in isolated proximal tubular cells from rat kidney. Biochem. Pharmacol. 52:259‐272.
   Weissman, J.S. and Kim, P.S. 1995. A kinetic explanation for the rearrangement pathway of BPTI folding. Nature Struct. Biol. 2:1123‐1130.
   Yan, N. and Meister, A. 1990. Amino acid sequence of rat kidney gamma‐glutamylcysteine synthetase. J. Biol. Chem. 265:1588‐1593.
   Yi, J.‐R., Lu, S., Fernandez‐Checa, J.C., and Kaplowitz, N. 1994. Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics. J. Clin. Invest. 93:1841‐1845.
   Yi, J.‐R., Lu, S., Fernandez‐Checa, J.C., and Kaplowitz, N. 1995. Expression cloning of the cDNA for a polypeptide associated with rat hepatic sinusoidal reduced glutathione transport: Characteristics and comparison with the canicular transporter. Proc. Natl. Acad. Sci. U.S.A. 92:1495‐1499.
   Yoshimura, K., Iwauchi, Y., Sugiyama, S., Kuwamura, T., Odaka, Y., Satoh, T., and Kitagawa, H. 1982. Transport of L‐cysteine and reduced glutathione through biological membranes. Res. Commun. Chem. Pathol. Pharmacol. 37:171‐186.
PDF or HTML at Wiley Online Library