Analysis of Glutathione‐Related Enzymes

R.S. Esworthy1, F.‐F. Chu1, J.H. Doroshow1

1 City of Hope National Medical Center, Duarte, California
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 7.1
DOI:  10.1002/0471140856.tx0701s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Glutathione peroxidase activity can be measured using a variety of substrates to define total glutathione peroxidase activity or the activity of subsets of the family of enzymes. The assays for these activities are spectrophotometric assays, and the specificity depends on the choice of substrate and/or prior treatment of the samples by chromatography or immunoprecipitation. This unit provides the assays and support protocols for synthesizing substrates and calculating specific activity.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Measurement of Glutathione Peroxidase Activity
  • Alternate Protocol 1: Assay of GSTs with GPX Activity and SeGPX with Cumene Hydroperoxide
  • Alternate Protocol 2: Assay of GPX4 (PHGPX) with Phosphatidyl Choline Hydroperoxide
  • Support Protocol 1: Synthesis of Phosphatidyl Choline Hydroperoxide (PLOOH) for the Assay of PHGPX
  • Alternate Protocol 3: Inclusive GPX Assay with Universal Substrates
  • Support Protocol 2: Synthesis and Isolation of Linoleic Acid Hydroperoxide for the Assay of GPX
  • Alternate Protocol 4: Assay of SeGPX and GST in Mixtures (Dual Assays)
  • Alternate Protocol 5: Assay of GPX1 and GPX4
  • Alternate Protocol 6: Chromatographic Separation and Assay of GPX Isoenzymes
  • Alternate Protocol 7: Assay of GPX1 and GPX2 After Selective Immunoprecipitation
  • Alternate Protocol 8: The Ferricyanate Method of Hydroperoxide Determination to Assay Glutathione Peroxidase
  • Support Protocol 3: Calculations of Specific Activity
  • Reagents and Solutions
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Measurement of Glutathione Peroxidase Activity

  Materials
  • Samples for analysis of glutathione peroxidase (GPX) activity
  • GPX‐positive control (for first‐time investigations; see recipe)
  • 10 mM GSH (freshly prepared; see recipe)
  • 2 mM β‐NADPH (freshly prepared; see recipe)
  • 5 mM H 2O 2 (see recipe)
  • 100 U/ml glutathione reductase (see recipe)
  • Assay buffer: 50 mM sodium phosphate, pH 7.0 ( appendix 2A)
  • 1.125 M sodium azide (see recipe)
  • Recording spectrophotometer with lamp and filters for 340‐nm operation
  • 1‐ml near‐uv‐rated plastic cuvettes with 1‐cm path (the assay can be easily scaled to smaller or larger volumes, if desired)

Alternate Protocol 1: Assay of GSTs with GPX Activity and SeGPX with Cumene Hydroperoxide

  • 30 mM cumene hydroperoxide (see recipe)

Alternate Protocol 2: Assay of GPX4 (PHGPX) with Phosphatidyl Choline Hydroperoxide

  Materials
  • Assay mix for GPX4 (see recipe)
  • 100 U/µl glutathione reductase (see recipe) in ice‐cold 0.4 M Tris⋅Cl, pH 7.4
  • 10% (v/v) peroxide‐free Triton X‐100 (Sigma, Aldrich, Boehringer Mannheim) in H 2O (keep on ice)
  • Phosphatidyl hydroperoxide (PLOOH) substrate in methanol (see protocol 4; concentration such that the substrate can be added to a final concentration of 20 to 30 µM in the assay mix by adding a 20‐ to 25‐µl aliquot of the methanol solution)
  • GPX4 positive control (see recipe)
  • Negative control: GPX1 standard free of GPX4 (optional, but advisable for the novice; see recipe)
  • 3‐ to 4‐ml near‐UV‐rated plastic cuvettes with 1‐cm path for spectrophotometer

Support Protocol 1: Synthesis of Phosphatidyl Choline Hydroperoxide (PLOOH) for the Assay of PHGPX

  Materials
  • Phosphatidyl choline (PL; Avanti Polar Lipids, Sigma, or Aldrich)
  • Source of nitrogen gas
  • 0.2 M sodium borate, pH 9 (or other buffer for pH 9 to 10 range)
  • 0.05 M sodium deoxycholate
  • Soybean lipoxygenase (Sigma Type IV or equivalent)
  • Absolute methanol
  • GPX4 positive control sample (see recipe)
  • 1‐ml Sep‐Pak C18 cartridge column, or equivalent
  • Additional reagents and equipment for assaying GPX4 (see protocol 3)

Alternate Protocol 3: Inclusive GPX Assay with Universal Substrates

  • Linoleic acid (Cayman Chemical)
  • 0.5 M sodium borate, pH 9
  • Petroleum ether
  • Ethyl acetate
  • 70:40:1 acetonitrile/H 2O/acetic acid
  • Rotary evaporator or full H‐type nitrogen or argon cylinder
  • Compressed air or oxygen tank to facilitate oxygenation of substrate
  • 3‐ml and 1‐ml Sep‐Pak C18 cartridge columns, or equivalent
  • Separatory funnels or other glassware for extractions

Support Protocol 2: Synthesis and Isolation of Linoleic Acid Hydroperoxide for the Assay of GPX

  Materials
  • Column buffer with reducing agent (see recipe)
  • Column standards: any set of proteins with native sizes of 15,000 to 100,000 Da
  • Sample to be fractionated
  • Columns: 50 cm length × 1.5 cm diameter to 100 cm length × 2 cm diameter (see Hagel, )
  • Tubing to connect the column and fraction collector
  • Sephadex G‐150 to 200 (see Hagel, )
  • Fraction collector with a capacity for up to 100 tubes (5‐ to 10‐ml volume)
  • Additional reagents and equipment for assays of GPX activities (see protocol 1, protocol 2, and protocol 5)
NOTE: Perform all steps at 4°C to 10°C using a cold room or other suitable means.

Alternate Protocol 4: Assay of SeGPX and GST in Mixtures (Dual Assays)

  Materials
  • GPX‐depleted immune (IgG) fraction of rabbit plasma (Esworthy et al., ): preimmune and anti‐GPX1
  • Immunoprecipitation buffer (see recipe)
  • 10% (w/v) suspension of washed Staphylococcus aureus protein A (see recipe)
  • Additional reagents and equipment for assay of GPX4 (see protocol 3)

Alternate Protocol 5: Assay of GPX1 and GPX4

  • 50% or 100% trichloroacetic acid (TCA)
  • 10 mM ferrous ammonium sulfate
  • 2.5 M potassium thiocyanate
  • Spectrophotometer
NOTE: The first step is either to carefully plan the assay so that some quantitative data can be obtained right away or to perform the assay on a trial basis using GSH as the reducing substrate so that real planning is possible. The time course of the reaction for a given sample activity can be roughly estimated from the parameters of the protocol 1 or protocol NaN, or protocol 7. GSH is usually the best substrate for GPX, so that reactions with alternative reducing substrates should run more slowly.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bao, Y., Chambers, S.J., and Williamson, G. 1995. Direct separation of hydroperoxy and hydroxy‐phosphatidylcholine derivatives: Application to the assay of phospholipid hydroperoxide glutathione peroxidase. Anal. Biochem. 224:395‐399.
   Bjornstedt, M., Xue, J., Huang, W., Akesson, B., and Holmgren, A. 1994. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J. Biol. Chem. 269:29382‐29384.
   Chae, H.Z., Chung, S.J., and Rhee, S.G. 1994. Thioredoxin‐dependent peroxide reductase from yeast. J. Biol. Chem. 269:27670‐27678.
   Chaudiere, J. and Tappel, A.L. 1983. Purification and characterization of selenium‐glutathione peroxidase from hamster liver. Arch. Biochem. Biophys. 226:448‐457.
   Cheng, W‐H., Ho, Y‐S., Ross, D.A., Valentine, B.A., Combs, G.F., Jr., and Lei, X.G. 1997. Cellular glutathione peroxidase knockout mice express normal levels of selenium‐dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J. Nutr. 127:1445‐1450.
   Chu, F‐F., Esworthy, R.S., Akman, S., and Doroshow, J.H. 1990. Modulation of glutathione peroxidase expression by selenium: Effect on human MCF‐7 breast cancer cell transfectants expressing a cellular glutathione peroxidase cDNA and doxorubicin‐resistant MCF‐7 cells. Nucl. Acids. Res. 18:1531‐1539.
   Chu, F‐F., Doroshow, J.H., and Esworthy, R.S. 1993. Expression, characterization, and tissue distribution of a new cellular selenium‐dependent glutathione peroxidase, GSHPx‐GI. J. Biol. Chem. 268:2571‐2576.
   De Haan, J.B., Bladier, C., Griffiths, P., et al. 1998. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress‐inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273:22528‐22536.
   Esworthy, R.S., Chu, F‐F., Geiger, P., Girotti, A.W., and Doroshow, J.H. 1993. Reactivity of plasma glutathione peroxidase with hydroperoxide substrates and glutathione. Arch. Biochem. Biophys. 307:29‐34.
   Esworthy, R.S., Baker, M.A., and Chu, F‐F. 1995. Expression of selenium‐dependent glutathione peroxidase in human breast tumor cell lines. Cancer Res. 55:957‐962.
   Esworthy, R.S., Ho, Y.S., and Chu, F.‐F. 1997. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch. Biochem. Biophys. 340:59‐63.
   Esworthy, R.S., Swiderek, K.M., Ho, Y.‐S., and Chu, F.‐F. 1998. Selenium‐dependent glutathione peroxidase–GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochim. Biophys. Acta. 1381:213‐226.
   Flohe, F. 1982. Role of GSH peroxidase in lipid peroxide metabolism. In Biology and Medicine, Lipid Peroxides. (K. Yagi, ed.) pp. 149‐159. Academic Press, New York.
   Flohe, L. and Gunzler, W.A. 1984. Assays of glutathione peroxidase. Methods Enzymol. 105:114‐121.
   Forman, H.J. and Kim, E. 1989. Inhibition by linoleic acid hydroperoxide of alveolar macrophage superoxide production: Effects upon mitochondrial and plasma membrane potentials. Arch. Biochem. Biophys. 274:443‐452.
   Freedman, J.E., Frei, B., Welch, G.N., and Loscalzo, J. 1995. Glutathione peroxidase potentiates the inhibition of platelet function by S‐nitrosothiols. J. Clin. Invest. 96:394‐400.
   Freedman, J.E., Loscalzo, J., Benoit, S.E., Valeri, C.R., Barnard, M.R., and Michelson, A.D. 1996. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J. Clin. Invest. 97:979‐987.
   Germain, G.S. and Arneson, R.M. 1977. Selenium induced glutathione peroxidase activity in mouse neuroblastoma cells. Biochem. Biophys. Res. Commun. 79:119‐123.
   Hagel, L. 1998. Gel‐filtration chromatography. In Current Protocols in Protein Science. (J.E. Coligan, B.M. Dunn, H.L. Ploegh, D.W. Speicher, and P.T. Wingfield, eds.) pp. 8.3.1‐8.3.30. John Wiley & Sons, New York.
   Himeno, S., Takekawa, A., Toyoda, H., and Imura, N. 1993. Tissue‐specific expression of glutathione peroxidase gene in guinea pigs. Biochim. Biophys. Acta. 1173:283‐288.
   Hiratsuka, A., Yamane, B., Yamazaki, S., Ozawa, N., and Watabe, T. 1997. Subunit Ya‐specific glutathione peroxidase activity toward cholesterol 7‐hydroperoxides of glutathione S‐transferases in cytosols from rat liver and skin. J. Biol. Chem. 272:4763‐4769.
   Ho, Y‐S., Magnenat, J‐L., Bronson, R.T., Cao, J., Gargano, M., Sugawara, M., and Funk, C.D. 1997. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem. 272:16644‐16651.
   Hong, Y., Li, C‐H., Burgess, J.R., Chan, M., Salem, A., Srikumar, K., and Reddy, C.C. 1989. The role of selenium‐dependent and selenium‐independent glutathione peroxidases in the formation of prostaglandin F2a J. Biol. Chem. 264:13793‐13800.
   Lam, K‐W., Wang, L., Hong, B‐S., and Treble, D. 1993. Purification of phospholipidhydroperoxide glutathione peroxidase from bovine retina. Curr. Eye Res. 12:9‐15.
   Lavole, L., Tremblay, A., and Mirault, M‐E. 1992. Distinct oxidoresistance phenotype of human T47D cells transfected by rat glutathione S‐transferease Yc expression vectors. J. Biol. Chem. 267:3632‐3636.
   Lawrence, R.A. and Burk, R.F. 1976. Glutathione peroxidase activity in selenium‐deficient rat liver. Biochem. Biophys. Res. Commun. 71:952‐958.
   Lawrence, R.A. and Burk, R.F. 1978. Species, tissue and subcellular distribution of non Se‐dependent glutathione peroxidase activity. J. Nutr. 108:211‐215.
   Lin, F., Jackson, V.E., and Girotti, A.W. 1995. Amplification and hyperexpression of the catalase gene in selenoperoxidase‐deficient leukemia cells. Arch. Biochem. Biophys. 317:7‐18.
   Maiorino, M. 1994. Effect of α‐lipoic acid on Se‐dependent glutathione peroxidases. In New Strategies in Prevention and Therapy. Biological Oxidants and Antioxidants. (L. Packer and E. Cadenas, eds.) pp. 69‐74, Hippokrates Verlag, Stuttgart, Germany.
   Maiorino, M., Roveri, A., Gregolin, C., and Ursini, F. 1986. Different effects of triton X‐100 deoxycholate, and fatty acids on the kinetics of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase. Arch. Biochem. Biophys. 251:600‐605.
   Maiorino, M., Gregolin, C., and Ursini, F. 1990. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 186:449‐483.
   Maiorino, M., Chu, F‐F., Ursini, F., Davies, K.J.A., Doroshow, J.H., and Esworthy, R.S. 1991. Phospholipid hydroperoxide glutathione peroxidase is the 18‐kDa selenoprotein expressed in human tumor cell lines. J. Biol. Chem. 24:7728‐7732.
   Mirault, M‐E., Tremblay, A., Beaudoin, N., and Tremblay, M. 1991. Overexpression of seleno‐glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem. 266:20752‐20760.
   Mosialou, E. and Morgenstern, R. 1989. Activity of rat liver microsomal glutathione transferase toward products of lipid peroxidation and studies of the effect of inhibitors on glutathione‐dependent protection against lipid peroxidation. J. Biochem. Biophys. 275:289‐294.
   Munz, B., Frank, S., Hubner, G., Olsen, E., and Werner, S. 1997. A novel type of glutathione peroxidase: Expression and regulation during wound repair. Biochem. J. 326:579‐585.
   Paglia, D.E. and Valentine, W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158‐169.
   Pascual, P., Martinez‐Lara, E., Barcena, J.A., Lopez‐Barea, J., and Toribio, F. 1992. Direct assay of glutathione peroxidase activity using high‐performance capillary electrophoresis. J. Chromatogr. 581:49‐56.
   Peshenko, I.V., Novoselov, V.I., Evdokimov, V.A. et al. 1998. Identification of 28 kDa secretory protein from rat olfactory epithelium as thiol‐specific antioxidant. Free Radical Biol. Med. 25:654‐659.
   Phelan, S.A., Johnson, K.A., Beier, D.A., and Paigen, B. 1998. Characterization of the murine gene encoding Aop2 (Antioxidant Protein 2) and identification of two highly related genes. Genomics. 54:132‐139.
   Reiter, R. and Wendel, A. 1983. Selenium and drug metabolism. I. Multiple modulattions of mouse liver enzymes. Biochem. Pharmacol. 32:3063‐3067.
   Roveri, A., Casasco, A., Maiorino, M., Dalan, P., and Calligaro, A. 1992. Phospholipid hydroperoxide glutathione peroxidase of rat testis. J. Biol. Chem. 267:6142‐6146.
   Singh, A. and Shichi, H. 1998. A novel glutathione peroxidase in bovine eye. J. Biol. Chem. 273:26171‐26178.
   Terao, J., Shibata, S.S., and Matsushita, S. 1988. Selective quantification of arachidonic acid hydroperoxides and their hydroxy derivatives in reverse‐phase high performance liquid chromatography. Anal. Biochem. 169:415‐423.
   Thurman, R.G., Ley, H.G., and Scholz, R. 1972. Hepatic microsomal ethanol oxidation. Eur. J. Biochem. 25:420‐430.
   Weitzel, F., Ursini, F., and Wendel, A. 1990. Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion. Biochim. Biophys. Acta. 1036:88‐94.
   Yagi, K., Komura, S., Kojima, H., Sun, Q., Nagata, N., Ohishi, N., Nishikimi, M. 1996. Expression of human phospholipid hydroperoxide glutathione peroxidase gene for protection of host cells from lipid hydroperoxide‐mediated injury. Biochem. Biophys. Res. Commun. 219:486‐491.
   Zhang, L., Maiorino, M., Roveri, A., and Ursini, F. 1989. Phospholipid hydroperoxide/glutathione peroxidase: Specific activity in tissues of rats of different age and comparison with other glutathione peroxidases. Biochim. Biophys. Acta. 1006:140‐143.
Key References
   Esworthy et al., 1993. See above.
  Presents basic information on GPX3 and the assay of this enzyme activity, as well as the assay of GPX4 by several means.
   Esworthy et al., 1998. See above.
  Two methods for the detection of GPX2 activity are demonstrated in this paper, one utilizing Gpx1 gene knockout mice and the other anti‐GPX1 antibody.
   Maiorino et al., 1990 See above.
  Discusses finding and methods for studying GPX4, at length. Comparative hydroperoxide rate constants for GPX4 versus GPX1 are listed.
   Paglia and Valentine, See above.
  These two references provide much basic information about glutathione peroxidases and the assay variations for GPX1 and GSTs.
   Lawrence and Burk, See above
  Basic information about Aop2 is presented in these two papers and the references within.
   Peshenko et al., See above
   Singh and Shichi, See above
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library