Overview of Neurotoxicology

Lucio G. Costa1

1 Department of Medicine and Surgery, University of Parma, Parma, Italy
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 11.1
DOI:  10.1002/cptx.36
Online Posting Date:  November, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The nervous system has a central and primary function in the body, and its relevance and complexity make it a target for a large number of toxic substances. The most common forms of neurotoxicity are the death of neurons (neuronopathy), the degeneration of axons (axonopathy), damage to glial cells (e.g., myelinopathy), and interference with the axonal membrane or neurotransmission. Important neurotoxicants are found among pesticides, metals, solvents, natural substances, and industrial chemicals. Environmental chemicals may also contribute to the etiopathogenesis of neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Specific testing guidelines exist to assess potential neurotoxicity and developmental neurotoxicity in particular, and novel alternative testing approaches are being developed. © 2017 by John Wiley & Sons, Inc.

Keywords: central nervous system; developmental neurotoxicity; microglia; neurobehavioral toxicity; neurotoxicity testing; neurotransmission; peripheral nervous system

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Unique Characteristics of the Nervous System
  • Types and Mechanisms of Neurotoxicity
  • Role of Neurotoxicants in Neurodevelopmental, Neuropsychiatric, and Neurodegenerative Disorders
  • Neurotoxicity Testing
  • Acknowledgements
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aschner, M., & Costa, L. G. (Eds.) (2004). The role of glia in neurotoxicity (2nd ed., pp. 1–456). Boca Raton: CRC Press.
  Aschner, M., & Costa, L. G. (Eds.) (2015). Environmental factors in neurodevelopmental and neurodegenerative disorders (pp. 1–436). Amsterdam: Elsevier.
  Bakir, F., Damluji, S. F., Amin Zaki, L., Murtadha, M., Khalidi, A., al‐Rawi, N. Y., … Doherty, R. A. (1973). Methylmercury poisoning in Iraq. Science, 181, 230–241. doi: 10.1126/science.181.4096.230.
  Baltazar, M. T., Dinis‐Oliveira, R. J., de Lourdes Bastos, M., Tsatsakis, A. M., Duarte, J. A., & Carvalho, F. (2014). Pesticide exposure as etiological factors in Parkinson's disease and other neurodegenerative diseases‐a mechanistic approach. Toxicology Letters, 230, 85–103. doi: 10.1016/j.toxlet.2014.01.039.
  Belbasis, L., Bellou, V., & Evangelou, E. (2016). Environmental risk factors and amyotrophic lateral sclerosis: An umbrella review and critical assessment of current evidence from systematic reviews and meta‐analyses of observational studies. Neuroepidemiology, 46, 96–105. doi: 10.1159/000443146.
  Bellou, V., Balbasis, L., Tzoulaki, I., Evangelou, E., & Ioannidis, J. P. (2016). Environmental risk factors and Parkinson's disease: An umbrella review of meta‐analyses. Parkinsonism & Related Disorders, 23, 1–9. doi: 10.1016/j.parkreldis.2015.12.008.
  Burbacher, T. M., Rodier, P. M., & Weiss, B. (1990). Methylmercury developmental neurotoxicity: A comparison of effects in humans and animals. Neurotoxicology and Teratology, 12, 191–202. doi: 10.1016/0892‐0362(90)90091‐P.
  Calleman, C. J. (1996). The metabolism and pharmacokinetics of acrylamide: Implications for mechanisms of toxicity and human risk estimation. Drug Metabolism Reviews, 28, 527–590. doi: 10.3109/03602539608994018.
  Calleman, C. J., Wu, Y., He, F., Tian, G., Bergmark, E., Zhang, S., … Costa, L. G. (1994). Relationship between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicology and Applied Pharmacology, 126, 361–371. doi: 10.1006/taap.1994.1127.
  Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic parkinsonism: Similarities and differences. Neurology, 44, 1583–1586. doi: 10.1212/WNL.44.9.1583.
  Candura, S. M., Manzo, L., & Costa, L. G. (1998). Role of occupational neurotoxicants in psychiatric and neurodegenerative disorders. In L. G. Costa & L. Manzo (Eds.), Occupational neurotoxicology (pp. 131–167). Boca Raton: CRC Press.
  Castoldi, A. F., Johansson, C., Onishchenko, N., Coccini, T., Roda, E., Vahter, M., … Manzo, L. (2008a). Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology and Pharmacology, 51, 201–214. doi: 10.1016/j.yrtph.2008.01.016.
  Castoldi, A. F., Onishchenko, N., Johansson, C., Coccini, T., Roda, E., Vahter, M., … Manzo, L. (2008b). Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology, 51, 215–229. doi: 10.1016/j.yrtph.2008.03.005.
  Chan, S., & Rovet, J. (2003). Thyroid hormones in fetal central nervous system development. Fetal and Maternal Medicine Review, 14, 177–208. doi: 10.1017/S0965539503001086.
  Cho, S. C., Bhang, S. Y., Hong, Y. C., Shin, M. S., Kim, B. N., Kim, J. W., … Kim, H. W. (2010). Relationship between environmental phthalate exposure and the intelligence of school‐age children. Environmental Health Perspectives, 118, 1027–1035. doi: 10.1289/ehp.0901376.
  Cory‐Slechta, D. A., & Weiss, B. (2012). Assessment of behavioral toxicity. In A. W. Hayes & C. L. Kruger (Eds.), Principles and methods of toxicology (6th edn., pp. 1831–1890). Boca Raton: CRC Press.
  Costa, L. G. (1998). Neurotoxicity testing: A discussion of in vitro alternatives. Environmental Health Perspectives, 106, 505–510. doi: 10.1289/ehp.98106505.
  Costa, L. G. (2006). Current issues in organophosphate toxicology. Clinica Chimica Acta; International Journal of Clinical Chemistry, 366, 309–314. doi: 10.1016/j.cca.2005.10.008.
  Costa, L. G. (2013). Toxic effects of pesticides. In C. D. Klaassen (Ed.), Casarett and Doull's Toxicology: The basic science of poisons (8th edn., pp. 933–980). New York: McGraw‐Hill.
  Costa, L. G., & Aschner, M. (2004). Role of glia in MPTP toxicity and Parkinson's disease. In M. Aschner & L. G. Costa (Eds.), The role of glia in neurotoxicity (pp. 439–444). Boca Raton: CRC Press.
  Costa, L. G., & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. doi: 10.1016/j.neuro.2007.08.007.
  Costa, L. G., Aschner, M., Vitalone, A., Syversen, T., & Soldin, O. P. (2004a). Developmental neuropathology of environmental agents. Annual Review of Pharmacology and Toxicology, 44, 87–110. doi: 10.1146/annurev.pharmtox.44.101802.121424.
  Costa, L. G., Yagle, K., Vitalone, A, & Guizzetti, M. (2004b). Alcohol and glia in the developing brain. In M. Aschner, & L. G. Costa (Eds.), The role of glia in neurotoxicity (pp. 343–354). Boca Raton: CRC Press.
  Costa, L. G., Giordano, G., & Faustman, E. M. (2010). Domoic acid as a developmental neurotoxin. Neurotoxicology, 31, 409–423. doi: 10.1016/j.neuro.2010.05.003.
  Costa, L. G., Giordano, G., & Guizzetti, M. (Eds.). (2011a). In Vitro Neurotoxicology: Methods and Protocols. In Methods in molecular biology (Vol. 758, pp. 1–415). New York: Springer‐Humana.
  Costa, L. G., Giordano, G., & Guizzetti, M. (2011b). Predictive models for neurotoxicity assessment. In J. J. Xu, & L. Urban (Eds.), Predictive toxicology in drug safety (pp. 135–152). Cambridge: Cambridge University Press.
  ECETOC (1992). Evaluation of the neurotoxic potential of chemicals. Brussels, Belgium: European Center for Ecotoxicology and Toxicology of Chemicals.
  Fan, L. W., Tien, L. T., Zheng, B., Pang, Y., Lin, R. C., Simpson, K. L., … Cai, Z. (2011). Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity. Brain, Behavior, and Immunity, 25, 286–297. doi: 10.1016/j.bbi.2010.09.020.
  Filipov, N. M., & Dodd, C. A. (2012). Role of glial cells in manganese neurotoxicity. Journal of Applied Toxicology, 32, 310–317. doi: 10.1002/jat.1762.
  Fretham, S. J. B., Caito, S., Martinez‐Finley, E. J., Giordano, G., Costa, L. G., & Aschner, M. (2014). Neurotoxicology. In A. W. Hayes & C. L. Kruger (Eds.), Hayes’ principles and methods of toxicology (6th edn., pp. 1579–1600). New York: Elsevier.
  Gebhart, A. M., & Goldstein, G. W. (1988). Use of an in vitro system to study the effects of lead on astrocyte‐endothelial cell interactions: A model for studying toxic injury to the blood‐brain barrier. Toxicology and Applied Pharmacology, 94, 191–206. doi: 10.1016/0041‐008X(88)90261‐X.
  Gilbert, M. E. (2011). Impact of low‐level thyroid hormone disruption induced by propylthiouracil on brain development and function. Toxicological Sciences, 124, 432–445. doi: 10.1093/toxsci/kfr244.
  Gilbert, S. G., & Weiss, B. (2006). A rationale for lowering the blood lead action level from 10 to 2 μg/dL. Neurotoxicology, 27, 693–701. doi: 10.1016/j.neuro.2006.06.008.
  Giordano, G., White, C. C., Mohar, I., Kavanagh, T. J., & Costa, L. G. (2007). Glutathione levels modulate domoic acid‐induced apoptosis in mouse cerebellar granule cells. Toxicological Sciences, 100, 433–444. doi: 10.1093/toxsci/kfm236.
  Giordano, G., & Costa, L. G. (2012). Developmental neurotoxicology: Some old and new issues. ISRN Toxicology, ID 814795, 1–12. doi: 10.5402/2012/814795.
  Graham, D. G., Amarnath, V., Valentine, W. M., Pyle, S. J., & Anthony, D. C. (1995). Pathogenetic studies of hexane and carbon disulfide neurotoxicity. CRC Critical Reviews in Toxicology, 25, 91–112. doi: 10.3109/10408449509021609.
  Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167–2178. doi: 10.1016/S0140‐6736(06)69665‐7.
  Hampson, D. R., & Manalo, J. L. (1998). The activation of glutamate receptors by kainic acid and domoic acid. Natural Toxins, 6, 153–158. doi: 10.1002/(SICI)1522‐7189(199805/08)6:3/4<153::AID‐NT16>3.0.CO;2‐1.
  Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25, 1–24. doi: 10.3109/10408449509089885.
  Killin, L. O. J., Starr, J. M., Shiue, I. J., & Russ, T. C. (2016). Environmental risk factors for dementia: A systematic review. BMC Geriatrics, 16, 175. doi: 10.1186/s12877‐016‐0342‐y.
  Ladefoged, O., Lam, H. R., Ostergaard, G., Nielsen, E., Arlien Soborg, P. (1995). Neurotoxicology: Review of definitions, methodology and criteria. Copenhagen: Danish Environmental Protection Agency.
  Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., … Roberts, R. (2005). Low‐level environmental lead exposure and children's intellectual function: An international pooled analysis. Environmental Health Perspectives, 113, 894–899. doi: 10.1289/ehp.7688.
  Liu, L., Zhang, D., Rodzinka‐Pasko, J. K., & Li, Y.‐M. (2016). Environmental risk factors for autism spectrum disorders. Nervenarzt, 87(Suppl 2), 55–61. doi: 10.1007/s00115‐016‐0176‐3.
  Masuo, Y., & Ishido, M. (2011). Neurotoxicity of endocrine disruptors: Possible involvement in brain development and neurodegeneration. Journal of Toxicology and Environmental Health. Part B, 14, 346–369. doi: 10.1080/10937404.2011.578557.
  Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70, 687–702. doi: 10.1016/j.neuron.2011.05.001.
  Moser, V. C., Aschner, M., Richardson, R. J., & Philbert, M. A. (2013). Toxic responses of the nervous system. In C. D. Klaassen (Ed.), Casarett and Doull's toxicology: The basic science of poisons, (8th ed., pp. 733–766). New York: McGraw Hill.
  Nakamura, K., Itoh, K., Dai, H., Han, L., Wang, X., Kato, S., … Fushiki, S. (2012). Prenatal and lactational exposure to low‐doses of bisphenol A alters adult mice behavior. Brain & Development, 34, 57–63. doi: 10.1016/j.braindev.2010.12.011.
  Needleman, H. L., Gunnoe, C., & Leviton, A. (1979). Deficits in psychologic and classroom performance of children with elevated dentine lead levels. The New England Journal of Medicine, 300, 689–695. doi: 10.1056/NEJM197903293001301.
  OECD (Organization for Economic Co‐operation and Development) (1997). Test guideline 424. OECD guideline for testing of chemicals. Neurotoxicity study in rodents. Paris: OECD.
  OECD (Organization for Economic Co‐operation and Development) (2007). Test guideline 426. OECD guideline for testing of chemicals. Developmental neurotoxicity study. Paris: OECD.
  Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., Todd, E. C., & Remis, R. S. (1990). An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. The New England Journal of Medicine, 322, 1775–1780. doi: 10.1056/NEJM199006213222504.
  Powell, H. C., Myers, R. R., & Lampert, P. W. (1982). Changes in Schwann cells and vessels in lead neuropathy. American Journal of Pathology, 109, 193–205.
  Pulido, O. M. (2008). Domoic acid toxicologic pathology: A review. Marine Drugs, 6, 180–219. doi: 10.3390/md6020180.
  Purves, D. C., Garrod, I. J., & Dayan, A. D. (1991). A comparison of spongiosis induced in the brain by hexachlorophene, cuprizone, and triethyl tin in the Sprague‐Dawley rat. Human & Experimental Toxicology, 10, 439–444. doi: 10.1177/096032719101000613.
  Roqué, P. J., Dao, K., & Costa, L. G. (2016). Microglia mediate diesel exhaust particle‐induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology, 56, 204–214. doi: 10.1016/j.neuro.2016.08.006.
  Satoh, T., & Gupta, R. C. (Eds.) (2010). Anticholinesterase pesticides: Metabolism, neurotoxicity, and epidemiology (pp. 1–625). Hoboken, NJ: John Wiley & Sons.
  Schmidt, B. Z., Lehmann, M., Gutbier, S., Nembo, E., Noel, S., Smirnova, L., … Dinnyés, A. (2017). In vitro acute and developmental neurotoxicity screening: An overview of cellular platforms and high‐throughput technical possibilities. Archives of Toxicology, 91, 1–33. doi: 10.1007/s00204‐016‐1805‐9.
  Simons, T. J. (1993). Lead‐calcium interactions in cellular lead toxicity. Neurotoxicology, 14, 168–176.
  Spencer, P. S., Schaumburg, H. H., & Ludolph, A. C. (Eds.) (2000). Experimental and clinical neurotoxicology (pp. 1310). Oxford: Oxford University Press.
  Takeuchi, T. (1982). Pathology of Minamata disease with special reference to its pathogenesis. Acta Pathologica Japonica, 32(Suppl. 1), 73–99.
  Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde, A., & Cashman, N. R. (1990). Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. The New England Journal of Medicine, 322, 1781–1787. doi: 10.1056/NEJM199006213222505.
  USEPA (United States Environmental Protection Agency) (1998a). Health Effects Test Guidelines. OPPTS 870.6200. Neurotoxicity screening battery. Washington DC: USEPA.
  USEPA (United States Environmental Protection Agency) (1998b). Health Effects Test Guidelines. OPPTS 870.6300. Developmental neurotoxicity study. Washington DC: USEPA.
  van Valen, E., van Thriel, C., Akila, R., Nilson, L. N., Bast‐Pettersen, R., Sainio, M., … Wekking, E. (2012). Chronic solvent encephalopathy: European consensus of neuropsychological characteristics, assessment, and guidelines for diagnostics. Neurotoxicology, 33, 710–726. doi: 10.1016/j.neuro.2012.03.010.
  Viberg, H., Fredriksson, A., Buratovic, S., & Eriksson, P. (2011). Dose‐dependent behavioral disturbances after a single neonatal bisphenol A dose. Toxicology, 290, 187–194. doi: 10.1016/j.tox.2011.09.006.
  Weiss, B. (2012). The intersection of neurotoxicology and endocrine disruption. Neurotoxicology, 33, 1410–1419. doi: 10.1016/j.neuro.2012.05.014.
  WHO (World Health Organization) (2006). Neurological disorders: Public health challenges (pp. 1–232). Geneva: WHO.
  Zoeller, R. T., & Crofton, K. M. (2005). Mode of action: Developmental thyroid hormone insufficiency‐Neurological abnormalities resulting from exposure to propylthiouracil. Critical Reviews in Toxicology, 35, 771–781. doi: 10.1080/10408440591007313.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library