Assessment of Spatial Memory

Gary L. Wenk1

1 University of Arizona, Tucson, Arizona
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 11.3
DOI:  10.1002/0471140856.tx1103s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Behavioral tasks must be evaluated in terms of the cognitive functions they require. The tasks described in this unit are useful for detecting stimulation by drugs or a small electrical current, impairment of normal function by production of lesions or administration of a pharmacologic or toxicologic agent, recording activity during performance of a specific task, or behavioral phenotyping of transgenic or knockout mice. The radial arm maze test is used for basic working memory or working memory versus reference memory; the water maze task is used for spatial memory, spatial probe trials, or working memory; and the T‐maze test is used for spatial memory, working versus reference memory, or spontaneous alternation.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Assessment of Spatial Memory
  • Basic Protocol 1: Use of Radial Arm Maze Task to Test Basic Working Memory
  • Alternate Protocol 1: Use of Radial Arm Maze Task to Test Working Versus Reference Memory
  • Basic Protocol 2: Use of Morris Water Maze Task to Test Spatial Memory
  • Alternate Protocol 2: Use of Water Maze Task for Spatial Probe Trial
  • Alternate Protocol 3: Use of Water Maze Task to Test Working Memory
  • Basic Protocol 3: Use of T Maze to Test Spatial Memory
  • Alternate Protocol 4: Use of T Maze to Test Working Versus Reference Memory
  • Alternate Protocol 5: Spontaneous Alternation a T Maze
  • Commentary
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Use of Radial Arm Maze Task to Test Basic Working Memory

  Materials
  • Rats
  • Pharmacologic or toxicologic agents (optional)
  • Food reward: e.g., 1‐mg piece of normal chow, flavored (chocolate) or sweetened breakfast cereal, chocolate milk, or water
  • Radial arm maze (Fig. ), handmade or fully automated (Coulbourn Instruments or Columbus Instruments)

Alternate Protocol 1: Use of Radial Arm Maze Task to Test Working Versus Reference Memory

  Materials
  • Rats
  • Pharmacologic or toxicologic agents (optional)
  • Water maze apparatus (Fig. )
  • Tracking system and software (Columbus Instruments, HVS Image, San Diego Instruments, or CPL Systems)

Basic Protocol 2: Use of Morris Water Maze Task to Test Spatial Memory

  Materials
  • Rats
  • Pharmacologic or toxicologic agents (optional)
  • Food reward: e.g., 1‐mg piece of normal chow, flavored (chocolate) or sweetened breakfast cereal, chocolate milk, or water
  • Split‐stem T maze (Fig. ), handmade or commercial (Coulbourn Instruments or Columbus Instruments), without hardware cloth partition, Plexiglas barrier, or curtain

Alternate Protocol 2: Use of Water Maze Task for Spatial Probe Trial

  • Hardware cloth partition, Plexiglas barrier, and curtain for split‐stem T maze (Fig. )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aggleton, J.P., Neave, N., Nagle, S., and Hunt, P.R. 1995. A comparison of the effects of anterior thalamic, mammillary body and fornix lesions on reinforced spatial alternation. Behav. Brain Res. 68:91‐101.
   Aggleton, J.P., Hunt, P.R., Nagle, S., and Neave, N. 1996. The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav. Brain Res. 81:189‐198.
   Avigan, M.R. and Powers, A.S. 1995. The effects of MK‐801 injections and dorsal cortex lesions on maze learning in turtles (Chrysemys picta). Psychobiology 23:63‐68.
   Barone, S., Stanton, M.E., and Mundy, W.R. 1995. Neurotoxic effects of neonatal triethyltin (TET) exposure are exacerbated with aging. Neurobiol. Aging 16:723‐735.
   Becker, J.T., Walker, J.A., and Olton, D.S. 1980. Neuroanatomical bases of spatial memory. Brain Res. 200:307‐320.
   Beracochea, D.J. and Jaffard, R. 1995. The effects of mammillary body lesions on delayed matching and delayed non‐matching to place tasks in the mice. Behav. Brain Res. 68:45‐52.
   Bond, A.B., Cook, R.B., and Lamb, M.R. 1981. Spatial memory and the performance of rats and pigeons in the radial‐arm maze. Anim. Learn. & Behav. 9:575‐580.
   Brandeis, R., Brandys, Y., and Yehuda, S. 1989. The use of the Morris water maze in the study of memory and learning. Int. J. Neurosci. 48:29‐69.
   Brandeis, R., Sapir, M., Kapon, Y., and Borelli, G. 1991. Improvement of cognitive function by MAO‐B inhibitor L‐deprenyl in aged rats. Pharmacol. Biochem. Behav. 39:297‐304.
   Buresova, O. and Skopkova, J. 1982. Vasopressin analogues and spatial working memory in the 24‐arm radial maze. Peptides 3:725‐727.
   Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M., Wynshaw‐Boris, A., and Paylor, R. 1997. Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology 132:107‐124.
   Dennis, W. 1939. Spontaneous alternation in rats as an indicator of the persistence of stimulus effects. J. Comp. Psychol. 28:305‐312.
   Devenport, L.D., Merriman, V.J., and Devenport, J.A. 1983. Effects of ethanol on enforced spatial variability in the 8‐arm radial maze. Pharmacol. Biochem. Behav. 18:55‐59.
   Durantou, F., Cazala, P., and Jaffard, R. 1989. Intertrial interval dependent effect of lateral hypothalamic stimulation on spontaneous alternation behavior in a T‐maze. Physiol. Behav. 46:253‐258.
   Gage, F.H., Dunnett, S.B., and Bjorklund, A. 1984. Spatial learning and motor deficits in aged rats. Neurobiol. Aging 5:43‐48.
   Givens, B. and Olton, D.S. 1995. Bidirectional modulation of scopolamine‐induced working memory impairments by muscarinic activation of the medial septal area. Neurobiol. Learn. Mem. 63:269‐276.
   Hagan, J.J., Alpert, J.E., Morris, R.G., and Iversen, S.D. 1983. The effects of central catecholamine depletions on spatial learning in rats. Behav. Brain Res. 9:83‐104.
   Hagan, J.J., Tweedie, F., and Morris, R.G. 1986. Lack of task specificity and absence of posttraining effects of atropine on learning. Behav. Neurosci. 100:483‐493.
   Hamilton, G.V. 1911. A study of trial and error reactions in mammals. J. Anim. Behav. 1:33‐66.
   Hepler, D., Olton, D., Wenk, G., and Coyle, J. 1985. Lesions of the nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J. Neurosci. 5:866‐873.
   Hosoi, E., Swift, D.M., Rittenhouse, L.R., and Richards, R.W. 1995. Comparative foraging strategies of sheep and goats in a T‐maze apparatus. Appl. Anim. Behav. Sci. 44:37‐45.
   Kesner, R.P. and Novak, J.M. 1982. Serial position curve in rats: Role of the dorsal hippocampus. Science 218:173‐175.
   Kolb, B., Sutherland, R.J., and Whishaw, I.Q. 1983. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav. Neurosci. 97:13‐27.
   Levin, E.D. 1988. Psychopharmacological effects in the radial‐arm maze. Neurosci. Biobehav. Rev. 12:169‐175.
   Levin, E.D., Wilkerson, A., Jones, J.P., and Christopher, N.C. 1996. Prenatal nicotine effects on memory in rats: Pharmacological and behavioral challenges. Dev. Brain Res. 97:207‐215.
   Levy, A., Kluge, P.B., and Elsmore, T.F. 1983. Radial arm maze performance of mice: Acquisition and atropine effects. Behav. Neural Biol. 39:229‐240.
   McNamara, R.K. and Skelton, R.W. 1991. Diazepam impairs acquisition but not performance in the Morris water maze. Pharmacol. Biochem. Behav. 38:651‐658.
   McNaughton, N. and Morris, R.G. 1987. Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav. Brain Res. 24:39‐46.
   Mendl, M., Erhard, H.W., Haskell, M., and Wemelsfelder, F. 1997. Experience in substrate‐enriched and substrate‐impoverished environments affects behaviour of pigs in T‐maze task. Behavior 134:643‐659.
   Morris, R.G.M. 1981. Spatial localisation does not depend on the presence of local cues. Learn. Motiv. 12:239‐260.
   Morris, R.G., Garrud, J., Rawlins, N.P., and O'Keefe, J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681‐683.
   Okaichi, J. and Jarrard, L.E. 1982. Scopolamine impairs performance of a place and cue task in rats. Behav. Neural Biol. 35:319‐325.
   Olton, D.S. and Samuelson, R.J. 1976. Remembrance of places passed: Spatial memory in rats. Exp. Psychol. [Anim. Behav.] 2:97‐116.
   Pitsikas, N., Carli, M., Fidecka, S., and Algeri, S. 1990. Effect of life‐long hypocaloric diet on age‐related changes in motor and cognitive behavior in a rat population. Neurobiol. Aging 11:417‐423.
   Rapp, P.R., Rosenberg, R.A., and Gallagher, M. 1987. An evaluation of spatial information processing in aged rats. Behav. Neurosci. 10:3‐12.
   Sanchez‐Santed, F., de Bruin, J.P.C., Heinsbroek, R.P.W., and Verwer, R.W.H. 1997. Spatial delayed alternation of rats in a T‐maze: Effects of neurotoxic lesions of the medial prefrontal cortex and of T‐maze rotations. Behav. Brain Res. 84:73‐79.
   Schnurr, R. 1971. Spontaneous alternation in normal and brain‐damaged gerbils. Psychol. Sci. 25:181‐182.
   Stevens, R. 1981. Scopolamine impairs spatial maze performance in rats. Physiol. & Behav. 27:385‐386.
   Sutherland, R.J., Whishaw, I.Q., and Regehr, J.C. 1982. Cholinergic receptor blockade impairs spatial localization by use of distal cues in the rat. J. Comp. Physiol. Psychol. 96:563‐573.
   Tolman, E.C. 1925. Purpose and cognition: The determiners of animal learning. Psychol. Rev. 32:285‐297.
   Tolman, E.C., Ritchie, F.B., and Kalish, D. 1946. Studies in spatial learning. I. Orientation and the short cut. J. Exp. Psychol. 36:13‐24.
   Tsien, J.Z., Huerta, P.T., and Tonegawa, S. 1996. The essential role of hippocampal CA1 NMDA receptor‐dependent synaptic plasticity in spatial memory. Cell. 87:1327‐1338.
   Walsh, T.J., Miller, D.B., and Dyer, R.S. 1982. Trimethyltin, a selective limbic system neurotoxicant, impairs radial arm maze performance. Neurobehav. Toxicol. Teratol. 4:177‐183.
   Watts, J., Stevens, R., and Clare, R. 1981. Effects of scopolamine on radial maze performance, male rats, implications for hippocampal role in spatial memory. Physiol. & Behav. 26:845‐851.
   Wenk, G.L., Hughey, D., Boundy, V., Kim, A., Walker, L., and Olton, D.S. 1987. Neurotransmitters and memory: The role of cholinergic, serotonergic and noradrenergic systems. Behav. Neurosci. 101:325‐332.
   Wenk, G.L., Markowska, A.L., and Olton, D.S. 1989. Basal forebrain lesions and memory: Alterations in neurotensin, not acetylcholine, may cause amnesia. Behav. Neurosci. 103:765‐769.
   Wenk, G., Sweeney, J., Hughey, D., Carson, J., and Olton, D. 1986. Choline acetyltransferase inhibition does not impair radial maze performance in rats. Pharmacol. Biochem. Behav. 25:521‐526.
   White, S.R. 1974. Atropine, scopolamine and hippocampal lesion effects on alternation performance of rats. Pharmacol. Biochem. Behav. 2:297‐307.
Key References
   Brandeis et al. 1989 See .
  Provides a general review of the many ways the water maze task has been used to study brain function and the general theoretical principles that underlie its use.
   Hepler, et al. 1985 See .
  Provides an introduction to the use of the split‐stem T maze to determine the effects of specific brain lesions.
   Olton, D.S. 1983. The use of animal models to evaluate the effects of neurotoxins on cognitive processes. Neurobehav. Toxicol. Teratol. 5:635‐640.
  This review describes the use of many different behavioral tasks in toxicological studies.
   Olton, D.S. 1985. The radial arm maze as a tool in behavioral pharmacology. Physiol. & Behav. 40:793‐797.
  Reviews the many ways in which the radial arm maze task has been and can be used to investigate the effects of lesions or drugs upon the function of specific brain regions.
   Richman, C.L., Dember, W.N., and Kim, P. 1986/1987 Spontaneous alternation behavior in animals: A review. Curr. Psychol. Res. Rev. 5:358‐391.
  Provides a general review of the use of the standard T maze to study spontaneous alternation behavior.
   Stanton, M.E. 1992. Animal models of cognitive development in neurotoxicology. In The Vulnerable Brain and Environmental Risks, Vol. 1: Malnutrition and Hazard Assessment (R.L. Isaacson and K.F. Jenson, eds.) pp. 129‐146. Plenum Press, New York.
  This review describes the use of many different behavioral tasks in toxicological studies.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library