Co‐Culture of Neurons and Microglia

Pamela J. Roqué1, Lucio G. Costa2

1 Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 2 Department of Neuroscience, University of Parma, Parma
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 11.24
DOI:  10.1002/cptx.32
Online Posting Date:  November, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Microglia, the resident immune cells of the brain, have been implicated in numerous neurodegenerative and neurodevelopmental diseases. Activation of microglia by a variety of stimuli induces the release of factors, including pro‐ and anti‐inflammatory cytokines and reactive oxygen species, that contribute to modulating neuro‐inflammation and oxidative stress, two crucial processes linked to disorders of the central nervous system. The in vitro techniques described here will provide a set of protocols for the isolation and plating of primary cerebellar granule neurons, primary cortical microglia from a mixed glia culture, and methods for co‐culturing both cell types. These methods allow the study of how microglia and the factors they release in this shared environment mediate the effects of toxicants on neuronal function and survival. The protocols presented here allow for flexibility in experimental design, the study of numerous toxicological endpoints, and the opportunity to explore neuroprotective strategies. © 2017 by John Wiley & Sons, Inc.

Keywords: co‐culture; glia; microglia; neurons; neuro‐inflammation; oxidative stress

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation and Culture of Mouse Primary Cerebellar Granule Neurons
  • Basic Protocol 2: Preparation of Cortical Mixed Glial Cultures
  • Basic Protocol 3: Isolate Primary Microglia from Mixed Glial Cultures
  • Basic Protocol 4: Primary Neuron and Microglia Co‐Cultures
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation and Culture of Mouse Primary Cerebellar Granule Neurons

  Materials
  • Mice, post‐natal day (PND) 6 to 8
  • 40 µg/ml poly‐D‐lysine working solution (see recipe)
  • Hank's balanced salt solution (HBSS; see recipe)
  • Papain wosrking solution, 1 ml per 2 pups (see recipe)
  • 4 mg/ml DNase (see recipe)
  • NB medium (see recipe)
  • Hank's balanced salt solution, calcium and magnesium free (HBSS‐CMF; see recipe)
  • NB minus antioxidants (NB–AO)
  • 24‐well sterile cell culture plates
  • 12‐mm, round glass coverslips (optional)
  • 15‐ and 50‐ml conical tubes
  • 50‐ml tubes (2) containing 70% ethanol, two‐thirds full
  • 5‐ and 10‐ml serological pipettes
  • Sterile 35‐mm dish for tissue collection
  • 10‐ml syringe with 0.22 syringe filter for sterilization of papain
  • Sterile filter paper, round, 100‐mm
  • Sterile 100‐mm dishes (3) for pup and tissue collection, with filter paper
  • Ice in a small container to hold 35‐mm dish during tissue collection
  • Sterile surgical tools
  • 100‐µm filters for 50‐ml tube

Basic Protocol 2: Preparation of Cortical Mixed Glial Cultures

  Additional Materials (also see protocol 1)
  • Mice, post‐natal day 3 (PND3) pups
  • Mixed glia and microglia medium (see recipe)
  • 0.25% trypsin in PBS (see recipe), 1 ml per pup cortex
  • Phosphate‐buffered saline (PBS; see appendix 2A)
  • T175 flasks
  • Laminar‐flow cell culture hood

Basic Protocol 3: Isolate Primary Microglia from Mixed Glial Cultures

  Additional Materials (also see Basic Protocols protocol 11 and protocol 22)
  • Established mixed glia cultures, days 12 to 15 (see protocol 2)
  • 24‐well inserts (3‐µm pores)
  • Tweezers to move inserts

Basic Protocol 4: Primary Neuron and Microglia Co‐Cultures

  Additional Materials (also see Basic Protocols protocol 11 and protocol 22)
  • Primary CGNs, day 10 (see protocol 1)
  • Primary microglia in inserts, day 2 (see protocol 3)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Banker, G., & Goslin, K. (1998). Types of nerve cell cultures, their advantages and limitations. In Banker, G., & Goslin, K. (Eds.), Culturing nerve cells (2nd ed., pp. 11–36). Boston, MA: MIT Press.
  Block, M. L., Wu, X., Pei, Z., Li, G., Wang, T., Qin, L., … Veronesi, B. (2004). Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: The role of microglia, phagocytosis, and NADPH oxidase. FASEB Journal, 18, 1618–1620. doi: 10.1096/fj.04‐1945fje.
  Block, M. L., Zecca, L., & Hong, J.‐S. (2007). Microglia‐mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8, 57–69. doi: 10.1038/nrn2038.
  Christopherson, K. S., Ullian, E. M., Stokes, C. C. A., Mullowney, C. E., Hell, J. W., Agah, A., … Barres, B. A. (2005). Thrombospondins are astrocyte‐secreted proteins that promote CNS synaptogenesis. Cell, 120, 421–433. doi: 10.1016/j.cell.2004.12.020.
  Flode, A. M., & Combs, C. K. (2007). Microglia repetitively isolated from in vitro mixed glial cultures retain their initial phenotype. Journal of Neuroscience Methods, 164, 218–224. doi: 10.1016/j.jneumeth.2007.04.018.
  Giordano, G., & Costa, L. G. (2011). Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods in Molecular Biology, 758, 13–27. doi: 10.1007/978‐1‐61779‐170‐3_2
  Giordano, G., White, C. C., McConnachie, L. A., Fernandez, C., Kavanagh, T. J., & Costa, L. G. (2006). Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Molecular Pharmacology, 70, 2116–2126. doi: 10.1124/mol.106.027748.
  Goldmann, T., & Prinz, M. (2013). Role of microglia in CNS autoimmunity. Clinical & Developmental Immunology, 2013, 208093. doi: 10.1155/2013/208093.
  Grabert, K., Michoel, T., Karavolos, M. H., Clohisey, S., Baillie, J. K., Stevens, M. P., … McColl, B. W. (2016). Microglial brain region‐dependent diversity and selective regional sensitivities to aging. Nature Neuroscience, 19, 504–516. doi: 10.1038/nn.4222.
  Graeber, M. B., Li, W., & Rodriguez, M. L. (2011). Role of microglia in CNS inflammation. FEBS Letters, 585, 3798–3805. doi: 10.1016/j.febslet.2011.08.033.
  Hilgenberg, L. G. W., & Smith, M. A. (2007). Preparation of dissociated mouse cortical neuron cultures. Journal of Visualized Experiments, (10), 562. doi: 10.3791/562.
  Hong, S., Beja‐Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., … Stevens, B. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352, 712–716. doi: 10.1126/science.aad8373.
  Huang, S. C., Giordano, G., & Costa, L. G. (2010). Comparative cytotoxicity and intracellular accumulation of five polybrominated diphenyl ether congeners in mouse cerebellar granule neurons. Toxicological Sciences, 114, 124–132. doi: 10.1093/toxsci/kfp296.
  Kaech, S., & Banker, G. (2006). Culturing hippocampal neurons. Nature Protocols, 1, 2406–2415. doi: 10.1038/nprot.2006.356.
  Kraft, A. D., & Harry, G. J. (2011). Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. International Journal of Environmental Research and Public Health, 8, 2980–3018. doi: 10.3390/ijerph8072980.
  Lawson, L. J., Perry, V. H., Dri, P., & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 39, 151–170. doi: 10.1016/0306‐4522(90)90229‐W.
  Lee, H. Y., Greene, L. A., Mason, C. A., & Manzini, M. C. (2009). Isolation and culture of post‐natal mouse cerebellar granule neuron progenitor cells and neurons. Journal of Visualized Experiments, (23), e990. doi: 10.3791/990.
  Llinás, R. R., Walton, K. D., & Lang, E. J. (2004). Cerebellum. In G. M. Shepherd (Ed.), The synaptic organization of the brain (pp. 271–310). New York, NY: Oxford University Press.
  Luo, X.‐G., & Chen, S.‐D. (2012). The changing phenotype of microglia from homeostasis to disease. Translational Neurodegeneration, 1, 9. doi: 10.1186/2047‐9158‐1‐9.
  Monnet‐Tschudi, F., Defaux, A., Braissant, O., Cagnon, L., & Zurich, M.‐G. (2011). Methods to assess neuroinflammation. Current Protocols in Toxicology, 50, 12.19.1–12.19.20. doi: 10.1002/0471140856.tx1219s50.
  Ni, M., & Aschner, M. (2010). Neonatal rat primary microglia: Isolation, culturing, and selected applications. Current Protocols in Toxicology, 43, 12.17.1–12.17.16. doi: 10.1002/0471140856.tx1217s43.
  Oberdoerster, J. (2001). Isolation of cerebellar granule cells from neonatal rats. Current Protocols in Toxicology, 12, 12.7.1–12.7.10. doi: 10.1002/0471140856.tx1207s09.
  Oberheim, N. A., Wang, X., Goldman, S., & Nedergaard, M. (2006). Astrocytic complexity distinguishes the human brain. Trends in Neurosciences, 29, 547–553. doi: 10.1016/j.tins.2006.08.004.
  Qian, L., & Flood, P. M. (2008). Microglial cells and Parkinson's disease. Immunologic Research, 41, 155–164. doi: 10.1007/s12026‐008‐8018‐0.
  Ransohoff, R. M., & Cardona, A. E. (2010). The myeloid cells of the central nervous system parenchyma. Nature, 468, 253–262. doi: 10.1038/nature09615.
  Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: Unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145. doi: 10.1146/annurev.immunol.021908.132528.
  Roqué, P. J., Dao, K., & Costa, L. G. (2016). Microglia mediate diesel exhaust particle‐induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology, 56, 204–214. doi: 10.1016/j.neuro.2016.08.006.
  Roqué, P. J., Guizzetti, M., & Costa, L. G. (2014). Synaptic structure quantification in cultured neurons. Current Protocols in Toxicology, 60, 12.22.1–12.22.32. doi: 10.1002/0471140856.tx1222s60.
  Roqué, P. J., Guizzetti, M., Giordano, G., & Costa, L. G. (2011). Quantification of synaptic structure formation in cocultures of astrocytes and hippocampal neurons. Methods in Molecular Biology, 758, 361–390. doi: 10.1007/978‐1‐61779‐170‐3_25.
  Schitine, C., Nogaroli, L., Costa, M. R., & Hedin‐Pereira, C. (2015). Astrocyte heterogeneity in the brain: From development to disease. Frontiers in Cellular Neuroscience, 9, 76. doi: 10.3389/fncel.2015.00076.
  Selvakumar, T., & Kilpatrick, D. L. (2013). Culturing mouse cerebellar granule neurons. Methods in Molecular Biology, 1018, 49–59. doi: 10.1007/978‐1‐62703‐444‐9_5
  Spijker, S. (2011). Dissection of rodent brain regions. In K. W. Li (Ed.), Neuroproteomics. Neuromethods (vol. 57, pp. 13–26). Totowa, NJ: Humana Press.
  Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: A confocal time‐lapse analysis in hippocampal slices. Glia, 33, 256–266. doi: 10.1002/1098‐1136(200103)33:3%3c256::xAID‐GLIA1024%3e3.0.CO;2‐J.
  Szabo, M., & Gulya, K. (2013). Development of the microglial phenotype in culture. Neuroscience, 241, 280–295. doi: 10.1016/j.neuroscience.2013.03.033.
  Takano, T. (2015). Role of microglia in autism: Recent advances. Developmental Neuroscience, 37, 195–202. doi: 10.1159/000398791.
  Tamashiro, T. T., Dalgard, C. L., & Byrnes, K. R. (2012). Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. Journal of Visualized Experiments, (66), e3814. doi: 10.3791/3814.
  Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., & Barres, B. A. (2001). Control of synapse number by glia. Science, 291, 657–661. doi: 10.1126/science.291.5504.657.
  Viviani, B. (2003). Coculturing neurons and glial cells. Current Protocols in Toxicology, 15, 12.10.1–12.10.17. doi: 10.1002/0471140856.tx1210s15.
  Viviani, B. (2006). Preparation and coculture of neurons and glial cells. Current Protocols in Cell Biology, 32, 2.7.1–2.7.21. doi: 10.1002/0471143030.cb0207s32.
  Witting, A., & Möller, T. (2011). Microglia cell culture: A primer for the novice. Methods in Molecular Biology, 758, 49–66. doi: 10.1007/978‐1‐61779‐170‐3_4.
  Yang, T.‐T., Lin, C., Hsu, C.‐T., Wang, T.‐F., Ke, F.‐Y., & Kuo, Y.‐M. (2013). Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Structure & Function, 218, 1051–1060. doi: 10.1007/s00429‐012‐0446‐x.
  Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., … Gross, C. T. (2014). Deficient neuron‐microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17, 400–406. doi: 10.1038/nn.3641.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library