Morphometric Analysis in Neurodegenerative Disorders

Dejan Milatovic1, Thomas J. Montine2, Snjezana Zaja‐Milatovic1, Jennifer L. Madison1, Aaron B. Bowman1, Michael Aschner1

1 Vanderbilt University School of Medicine, Nashville, Tennessee, 2 University of Washington School of Medicine, Seattle, Washington
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 12.16
DOI:  10.1002/0471140856.tx1216s46
Online Posting Date:  November, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Golgi impregnation has been commonly used for neuronal morphometry in a number of neurological diseases and brain‐disorder studies. Introduced more than a century ago, it is still the standard and state‐of‐the‐art technique for visualization of neuronal architecture. We successfully applied the Golgi method to mouse, rat, monkey, and human brain tissues for studying both the normal and abnormal morphology of neurons. We were able to discover subtle morphological alterations in neuronal dendrites and dendritic spines in different brain areas. Although Golgi preparations can be examined by electronic microscopy, we used light microscopy and reconstruction using Neurolucida software to quantitatively explore the relationship between total dendritic length and spine density in different types of neurons. This unit summarizes the methodology used to quantify neuronal abnormalities and discusses the utility of these techniques in different models of neurodegeneration. Curr. Protoc. Toxicol. 46:12.16.1‐12.16.14. © 2010 by John Wiley & Sons, Inc.

Keywords: Golgi impregnation; Neurolucida; dendrites; dendritic spine; neuronal morphometry

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Experimental animal, e.g., mouse, rat, monkey
  • FD Rapid Golgi Stain Kit (FD NeuroTechnologies, cat. no. PK‐401)
  • 50%, 70%, 95%, and 100% ethanol
  • Xylenes
  • Paraffin
  • 1% (w/v) bovine serum albumin (Sigma A3912) in PBS
  • Tissue‐Tek O.C.T. Compound (Sakura Finetek, cat. no. 4583)
  • 0.1% cresyl violet
  • Histo‐Clear (National Diagnostics; optional)
  • Cytoseal XYL mounting solution (Thermo Fisher Scientific)
  • Dissecting equipment
  • Razor blade (e.g., surgical carbon steel #12, single edge, VWR 55411‐055)
  • 15‐ml conical plastic tubes
  • Histology cassettes
  • Automated histology processor, e.g., Thermo Scientific Shandon Excelsior
  • Embedding molds
  • Automated rotary microtome (Leica RM 2235) or manual rotary microtome (Leica RM 2125)
  • Superfrost Plus microscope slide (25 × 75 × 1–mm; e.g., VWR, cat. no. 48311‐703)
  • Histology oven
  • Cryostat and chuck
  • Gelatin‐coated microscope slides (see recipe)
  • Slide box
  • Plastic staining dishes and rack (e.g., Sakura Finetek 4451)
  • Coverslips (24 × 50–mm, no. 1 1/ 2; e.g., VWR, cat. no. 48393‐241)
  • Light microscope, e.g., Olympus BX62 with motorized stage
  • Neurolucida and NeuroExplorer software (MBF Bioscience,
  • Additional reagents and equipment for anesthesia (Donovan and Brown, ) and euthanasia (Donovan and Brown, ) of animals
NOTE: Keep containers closed tightly at all times. Protect tissues from light during and after exposure to Solutions A and B. Perform all procedures at room temperature, unless specified.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Alfarez, D.N., De Simoni, A., Velzing, E.H., Bracey, E., Joels, M., Edwards, F.A., and Krugers, H.J. 2009. Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons. Hippocampus 19:828‐836.
   Angulo, A., Merchan, J.A., and Molina, M. 1994. Golgi‐Colonnier method: Correlation of the degree of chromium reduction and pH change with quality of staining. J. Histochem. Cytochem. 42:393‐403.
   Angulo, A., Fernandez, E., Merchan, J.A., and Molina, M. 1996. A reliable method for Golgi staining of retina and brain slices. J. Neurosci. Methods 66:55‐59.
   Blanpied, T.A. and Ehlers, M.D. 2004. Microanatomy of dendritic spines: Emerging principles of synaptic pathology in psychiatric and neurological disease. Biol. Psych. 55:1121‐1127.
   Buell, S.J. 1982. Golgi‐Cox and rapid Golgi methods as applied to autopsied human brain tissue: Widely disparate results. J. Neuropath. Exp. Neurol. 41:500‐507.
   Chen, J.R., Yan, Y.T., Wang, T.J., Chen, L.J., Wang, Y.J., and Tseng, J.F. 2009. Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cereb. Cortex 19:2719‐2727.
   Colonnier, M. 1964. The tangential organization of the visual cortex. J. Anat. 98:327‐344.
   D'Amelio, F.E. 1983. The Golgi‐Hortega‐Lavilla technique, with a useful additional step for application to brain tissue after prolonged fixation. Stain Technol. 58:79‐84.
   Day, M., Wang, Z., Ding, J., An, X., Ingham, C.A., and Shering A.F. 2006. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9:251‐259.
   Deutch, A.Y., Colbran, R.J., and Winder, D.J. 2007. Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism Relat. Disord. 13:S251‐S258.
   Donovan, J. and Brown, P. 1998. Anesthesia. Curr. Protoc. Immunol. 27:1.4.1‐1.4.5.
   Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Eadie, B.D., Redila, V.A., and Christie, B.R. 2005. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 486:39‐47.
   Fiala, J.C., Spacek, J., and Harris, K.M. 2002. Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Res. Rev. 39:29‐54.
   Fuchs, E., Flugge, G., and Czeh, B. 2006. Remodeling of neuronal networks by stress. Front. Biosci. 11:2746‐2758.
   Gabbott, P.L. and Somogyi, J. 1984. The ‘single’ section Golgi‐impregnation procedure: Methodological description. J. Neurosci. Methods 11:221‐230.
   Garey, L.J., Ong, W.Y., Patel, T.S., Kanani, M., Davis, A., Mortimer, A.M., Barnes, T.R.E., and Hirsch, S.R. 1998. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry 65:446‐453.
   Gibb, R. and Kolb, B. 1998. A method for vibratome sectioning of Golgi‐Cox stained whole rat brain. J. Neurosci. Methods 79:1‐4.
   Glantz, L.A. and Lewis, D.A. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57:65‐73.
   Glaser, E.M. and Van der Loos, H. 1981. Analysis of thick brain sections by obverse‐reverse computer microscopy: Application of a new, high clarity Golgi‐Nissl stain. J. Neurosci. Methods 4:117‐125.
   Golgi, C. 1873. Sulla struttura della sostanza grigia dell cervello. Gazz. Med. Lombarda 33:244‐246.
   Gupta, R.C., Milatovic, S., Dettbarn, W‐D., Aschner, M., and Milatovic. D. 2007. Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine. Toxicol. Appl. Pharmacol. 219:97‐105.
   Halpain, S., Spencer, K., and Graber, S. 2005. Dynamics and pathology of dendritic spines. Prog. Brain Res. 147:29‐37.
   Irwin, S.A., Galvez, R., and Greenough, W.T. 2000. Dendritic spine structural anomalies in fragile‐X mental retardation syndrome. Cereb. Cortex 10:1038‐1044.
   Izzo, P.N., Graybiel, A.M., and Bolam, J.P. 1987. Characterization of substance P‐ and [Met]enkephalin‐immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure. Neuroscience 20:577‐587.
   Jones, E.G. 1988. History of cortical cytology. In Cerebral Cortex (A. Peters and E.G. Jones, eds.) pp. 1‐32. Plenum Press, New York.
   Kaufmann, W.E. and Moser, H.W. 2000. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10:981‐991.
   Knobloch, M. and Mansuy, I.M. 2008. Dendritic spine loss and synaptic alterations in Alzheimer's disease. Mol. Neurobiol. 37:73‐82.
   Kopsch, F. 1896. Erfahrungen über die Verwendung des Formaldehyds bei der Chromsilber‐Imprägnation. Anat. An. 11:727.
   Leggio, M.G., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F., and Petrosini, L. 2005. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav. Brain Res. 163:78‐90.
   Marin‐Padilla, M., 1995. Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: A Golgi study. J. Comp. Neurol. 357:554‐572.
   Melendez‐Ferro, M., Perez‐Costa, E., and Roberts, R.C. 2009. A new use for long‐term frozen brain tissue: Golgi impregnation. J. Neurosci. Method 176:72‐77.
   Milatovic, D., Zaja‐Milatovic, S., Montine, K.S., Horner, P.J., and Montine, T.J. 2003. Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J. Neurochem. 87:1518‐1526.
   Milatovic, D., Zaja‐Milatovic, S., Montine, K.S., Shie, F.S., and Montine, T.J. 2004. Neuronal oxidative damage and dendritic degeneration following activation of CD14‐dependent innate immunity response in vivo. J. Neuroinflammation 1:20.
   Milatovic, D., Zaja‐Milatovic, S., Gupta, R.C., Yu, Y., and Aschner, M. 2009. Oxidative damage and neurodegeneration in manganese‐induced neurotoxicity. Toxicol. Appl. Pharmacol. 240:219‐225.
   Millhouse, O.E. 1981. The Golgi methods. In Neuroanatomical Tract‐Tracing Methods (L. Heimer and M.J. Robards, eds.) pp. 311‐343. Plenum Press, New York.
   Montine, T.J, Milatovic, D., Gupta, R.C., Morrow, J.D., and Breyer, R.M.. 2002. Neuronal oxidative damage from activated innate immunity in EP2 receptor‐dependent. J. Neurochem. 83:463‐470.
   Ramón‐Moliner, E. 1970. The Golgi‐Cox Technique. Springer, New York.
   Ramón y Cajal, S. 1888. Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Patol. 1:1‐10.
   Riley, J.N. 1979. A reliable Golgi‐Kopsch modification. Brain Res. Bull. 4:127‐129.
   Roitman, M.F., Na, E., Anderson, G., Jones, T.A., and Bernstein, I.L. 2002. Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J. Neurosci. 22:RC225.
   Scholl, D. 1953. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87:387‐406.
   Shansky, R.M., Hamo, C., Hof, P.R., McEwen, B.S., and Morrison, J.H. 2009. Stress‐induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19:2479‐2484.
   Spacek, J. 1989. Dynamics of the Golgi method: A time‐lapse study of the early stages of impregnation in single sections. J. Neurocytol. 18:27‐38.
   Spacek, J. 1992. Dynamics of Golgi impregnation in neurons. Microsc. Res. Tech. 23:264‐274.
   Stephens, B., Mueller, A.J., Shering, A.F., Hood, S.H., Taggart, P., Arbuthnott, G.W., Bell, J.E., Kilford, L., Kingsbury, A.E., Daniel, S.E., and Ingham, C.A. 2005. Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132:741‐754.
   Stranahan, A.M., Khalil, D., and Gould, E. 2007. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017‐1022.
   Zaja‐Milatovic, S., Milatovic, D., Schantz, A., Zhang, J., Montine, K., and Montine, T.J. 2005. Dendritic degeneration in neostriatal medium spiny neurons in late‐stage Parkinson disease. Neurology 64:545‐547.
   Zaja‐Milatovic, S., Gupta, R.C., Aschner, M., Montine, T.J., and Milatovic, D. 2008. Pharmacologic suppression of oxidative damage and dendritic degeneration following kainic acid–induced excitotoxicity in mouse cerebrum. Neurotoxicology 29:621‐627.
   Zaja‐Milatovic, S., Gupta, R.C., Aschner, M., and Milatovic, D. 2009. Protection of DFP‐induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist. Toxicol. Appl. Pharmacol. 240:124‐131.
PDF or HTML at Wiley Online Library