Neonatal Rat Primary Microglia: Isolation, Culturing, and Selected Applications

Mingwei Ni1, Michael Aschner1

1 Vanderbilt University Medical Center, Nashville, Tennessee
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 12.17
DOI:  10.1002/0471140856.tx1217s43
Online Posting Date:  February, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Microglial cells elaborate trophic factors and cytokines and remove toxins and debris from the extracellular space in the central nervous system, acting analogously to peripheral macrophages. Over the past two decades, increased attention has been directed at the role of microglia, not only in normal physiology, but also in mediating neurotoxicity. Activation of microglia is inherent to multiple neurodegenerative disorders and exposure to toxic compounds. In large measure, these revelations have come about as a result of technologies that enable researchers to obtain high yield and purity primary cultures of rodent microglia. The mechanical isolation protocol discussed in this unit offers an economical method to isolate large amounts of microglia in a short and not too labor‐intensive manner. Most importantly, it ensures a high yield of cells with great reproducibility. Given the ever‐increasing importance of microglia to the field of neurotoxicology research, the ability to isolate large quantities of primary microglia makes it possible to investigate the role and mechanisms associated with microglial modulation of neurotoxicity. We provide a detailed description on the methods that are routinely used in our laboratory for the isolation and culture of microglia, with emphasis on the steps that are deemed most critical for obtaining pure and healthy cultures. Curr. Protoc. Toxicol. 43:12.17.1‐12.17.16. © 2010 by John Wiley & Sons, Inc.

Keywords: microglia; isolation; culture; in vitro

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation and Maintenance of Primary Microglial Cell Cultures
  • Support Protocol 1: Preparing Fire‐Polished and Sigmacote‐Treated Pipets for Cell Isolation
  • Support Protocol 2: Coating Cell Culture Plate with Poly‐L‐Lysine
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation and Maintenance of Primary Microglial Cell Cultures

  Materials
  • Newborn rat pups, PND 1
  • 70% (v/v) ethanol
  • Hank's buffered salt solution (HBSS; Sigma, cat. no. H‐2387)
  • Penicillin/streptomycin (Invitrogen, cat. no.15140‐163)
  • S‐MEM: Minimal Essential Medium with Earle's salts, modified for suspension cultures (Invitrogen, cat. no. 11385)
  • Dissociation medium (see recipe)
  • Growth medium (see recipe)
  • Deoxyribonuclease I (DNase I) from bovine pancreas, type IV (Sigma Chemical Company, cat. no. D‐5025); sterilize DNase I by passing it through a syringe filter with 25‐cm cellulose acetate membrane, 0.2‐µm pore size (Pall Corporation, cat. no. 4612)
  • 0.4% trypan blue staining solution, liquid, sterile‐filtered, cell culture tested (Sigma, cat. no, T8154)
  • Phosphate‐buffered saline (PBS; BD Biosciences, cat. no. 554781)
  • 1× trypsin
  • Autoclave
  • Surgical instrument tray, autoclavable (VWR, cat. no. 62687‐069)
  • 4 × 3–in. sterile dressing sponges (VWR, cat. no. 82004‐740)
  • Mayo scissors, 7‐in. length, 50‐mm curved blade (VWR, cat. no. 95039‐258)
  • Biohazard bags
  • Micro‐dissecting scissors, 4‐in. length, 25‐mm angled blade, 3 each (VWR, cat. no. 89049‐674)
  • Curved forceps, 4‐in. length, full curve, 0.8‐mm tip width, 2 each (VWR, cat. no. 82927‐392)
  • 100‐mm petri dish
  • Dissecting microscope
  • Curved forceps, 4‐in. length, full curve, 0.4‐mm tip width, 2 each (VWR, cat. no. 82027‐406)
  • Dumont forceps (Pattern #5), 110‐mm length, tip 0.1 × 0.06–mm, 2 each (VWR, cat. no 25719‐066)
  • 50‐ml polypropylene tubes, sterile (VWR, cat. no. 82018‐052)
  • 50‐ml beaker and stir bar (length, 25 mm), covered with foil and autoclaved
  • Pipet sterilizing metal boxes for 5 ¾ ‐in.
  • 9‐in Pasteur pipets, cotton‐plugged
  • Portable power pipet filler/dispenser
  • 10‐ml Sigmacote‐treated glass pipet (see protocol 2), sterile
  • Low‐speed (60 rpm) stir plate
  • Laminar‐flow cell culture hood with ultraviolet (UV) light
  • 15‐ml polystyrene centrifuge tubes, sterile (VWR, cat. no. 21008‐216)
  • 9‐in. cotton‐plugged Sigmacote‐treated Pasteur pipet, sterile
  • Low‐speed centrifuge (<1000 × g) with swinging‐bucket rotor and 50‐ml conical tube adapters
  • Hemacytometer
  • 5‐in. Pasteur pipets
  • 225‐cm2 vented cell culture flasks (BD Falcon, cat. no. 353138), sterile
  • CO 2 incubator (37°C, 95% room air/5% CO 2, 95% humidity; NAPCO series 8000DH, Thermo Scientific)
  • 1‐ml, 5‐ml, 10‐ml, and 25‐ml serological pipets, cotton‐plugged disposable polystyrene, individually wrapped (Midwest Scientific), sterile
  • Inverted phase‐contrast microscope
  • PRECISION Durafuge 200R (or equivalent) centrifuge with a swinging‐bucket rotor
  • 6‐well cell culture plate

Support Protocol 1: Preparing Fire‐Polished and Sigmacote‐Treated Pipets for Cell Isolation

  Materials
  • Sigmacote (Sigma, cat. no. SL‐2)
  • 9‐in. Pasteur pipets
  • Bunsen burner
  • Cotton
  • Beaker
  • Paper towels
  • Pipet sterilizing metal boxes
  • Autoclave
  • 10‐ml glass serological pipets (VWR, cat. no. 20171‐042)

Support Protocol 2: Coating Cell Culture Plate with Poly‐L‐Lysine

  Materials
  • Poly‐L‐lysine hydrobromide (Sigma, cat. no. P‐1274)
  • Borate buffer (see recipe)
  • Distilled water, cell culture tested (Invitrogen, cat. no. 15230‐147), autoclaved
  • S‐MEM: Minimal Essential Medium with Earle's salts, modified for suspension cultures (Invitrogen, cat. no. 11385)
  • 6‐well plates
  • Laminar‐flow cell culture hood with ultraviolet (UV) light
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Allen, N.J. and Barres, B.A. 2005. Signaling between glia and neurons: Focus on synaptic plasticity. Curr. Opin. Neurobiol. 15:542‐548.
   Aschner, M. and Allen, J.W. 2000. Astrocytes in methylmercury, ammonia, methionine sulfoximine and alcohol‐induced neurotoxicity. Neurotoxicology 21:573‐579.
   Barger, S.W. and Basile, A.S. 2001. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J. Neurochem. 76:846‐854.
   Castellano, B., Gonzalez, B., Jensen, M.B., Pedersen, E.B., Finsen, B.R., and Zimmer, J. 1991. A double staining technique for simultaneous demonstration of astrocytes and microglia in brain sections and astroglial cell cultures. J. Histochem. Cytochem. 39:561‐568.
   Chang, J.Y. 2007. Methylmercury causes glial IL‐6 release. Neurosci. Lett. 416:217‐220.
   Cole, R. and de Vellis, J. 1992. Astrocyte and oligodendrocyte cultures. In Protocols for Neural Cell Culture. (S. Federoff and A. Richardson, eds.) pp. 65‐80. Humana, Totowa, N.J.
   Dheen, S.T., Kaur, C., and Ling, E.A. 2007. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14:1189‐1197.
   Frank, M.G., Wieseler‐Frank, J.L., Watkins, L.R., and Maier, S.F. 2006. Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. J. Neurosci. Methods 151:121‐130.
   Garg, T.K. and Chang, J.Y. 2006. Methylmercury causes oxidative stress and cytotoxicity in microglia: Attenuation by 15‐deoxy‐delta 12, 14‐prostaglandin J2. J. Neuroimmunol. 171:17‐28.
   Hamilton, J.A., Hillard, C.J., Spector, A.A., and Watkins, P.A. 2007. Brain uptake and utilization of fatty acids, lipids and lipoproteins: Application to neurological disorders. J. Mol. Neurosci. 33:2‐11.
   Hassan, N.F., Campbell, D.E., Rifat, S., and Douglas, S.D. 1991a. Isolation and characterization of human fetal brain‐derived microglia in in vitro culture. Neuroscience 41:149‐158.
   Hassan, N.F., Prakash, K., Chehimi, J., McCawley, L.J., and Douglas, S.D. 1991b. Isolation and characterization of newborn rabbit brain‐derived microglia. Clin. Immunol. Immunopathol. 59:426‐435.
   Hassan, N.F., Rifat, S., Campbell, D.E., McCawley, L.J., and Douglas, S.D. 1991c. Isolation and flow cytometric characterization of newborn mouse brain‐derived microglia maintained in vitro. J. Leukoc. Biol. 50:86‐92.
   Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G.V., and Veronisi, B. 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect. 115:1631‐1637.
   McCarthy, K.D. and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890‐902.
   Migeon, B.R., Axelman, J., and Stetten, G. 1988. Clonal evolution in human lymphoblast cultures. Am. J. Hum. Genet. 42:742‐747.
   Park, L.C., Zhang, H., and Gibson, G.E. 2001. Co‐culture with astrocytes or microglia protects metabolically impaired neurons. Mech. Ageing Dev. 123:21‐27.
   Pocock, J.M. and Kettenmann, H. 2007. Neurotransmitter receptors on microglia. Trends Neurosci. 30:527‐535.
   Ransohoff, R.M. and Perry, V.H. 2009. Microglial physiology: Unique stimuli, specialized responses. Annu. Rev. Immunol. 27:119‐145.
   Rogers, J., Mastroeni, D., Leonard, B., Joyce, J., and Grover, A. 2007. Neuroinflammation in Alzheimer's disease and Parkinson's disease: Are microglia pathogenic in either disorder? Int. Rev. Neurobiol. 82:235‐246.
   Schwabe, T., Bainton, R.J., Fetter, R.D., Heberlein, U., and Gaul, U. 2005. GPCR signaling is required for blood‐brain barrier formation in drosophila. Cell 123:133‐144.
   Shie, F.S., Nivison, M., Hsu, P.C., and Montine, T.J. 2009. Modulation of microglial innate immunity in Alzheimer's disease by activation of peroxisome proliferator‐activated receptor gamma. Curr. Med. Chem. 16:643‐651.
   Vernadakis, A. 1988. Neuron‐glia interrelations. Int. Rev. Neurobiol. 30:149‐224.
   Wang, Y., Cui, X., Tai, G., Ge, J., Li, N., Chen, F., You, F., and Lliu, Z. 2009. A critical role of activin A in maturation of mouse peritoneal macrophages in vitro and in vivo. Cell Mol. Immunol. 6:387‐392.
   Wilson, P.D. 1986. Use of cultured renal tubular cells in the study of cell injury. Miner Electrolyte Metab. 12:71‐83.
   Yang, I., Han, S.J., Kaur, G., Crane, C., and Parsa, A.T. 2009. The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci. (In press).
   Ye, S.M. and Johnson, R.W. 1999. Increased interleukin‐6 expression by microglia from brain of aged mice. J. Neuroimmunol. 93:139‐148.
   Yin, Z., Aschner, J.L., dos Santos, A.P., and Aschner, M. 2008. Mitochondrial‐dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res. 1203:1‐11.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library