Overview of Behavioral Teratology

Igor Branchi1, Giorgio Bignami1, Enrico Alleva1

1 Instituto Superiore di Sanità, Rome
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 13.7
DOI:  10.1002/0471140856.tx1307s25
Online Posting Date:  September, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The discipline of behavioral teratology is based on the study of behavior as a powerful tool to identify and disentangle noxious effects of compounds known or suspected to be potentially neurotoxic early during development. Indeed, because behavior is the ultimate output of the brain, behavioral assessments can provide critical information on the noxious actions exerted by selected chemicals—information which is different from, and complementary to, the information provided by neurochemical, cellular, and histological evaluations. In particular, behavioral assessments allow one to investigate the integrity of a number of brain processes, helping to identify selected structural and/or functional alterations. A large number of behavioral protocols are available which are rapid, simple, quantitative, easily replicable, and reliable as indices of brain dysfunction. This unit provides an overview of the field of behavioral teratology.

Keywords: Behavioral teratology; neurotoxicants; development

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Considerations in Behavioral Teratology
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alleva, E. and Sorace, A. 2000. Important hints in behavioural teratology of rodents. Curr. Pharm. Des. 6:99‐126.
   Alleva, E. and Vitale, A. 2000. We urgently need more data to improve the lives of laboratory animals. Nature 405:116.
   Alleva, E., Laviola, G., Tirelli, E., and Bignami, G. 1985. Short‐, medium‐, and long‐term effects of prenatal oxazepam on neurobehavioural development of mice. Psychopharmacology (Berl.) 87:434‐441.
   Alleva, E., Fasolo, A., Lipp, H.P., Nadel, L., and Ricceri, L. (eds.) 1995. Behavioural Brain Research in Naturalistic and Semi‐Naturalistic Settings. Kluwer Dodrecht, Amsterdam.
   Bateson, P. 1981. Ontogeny of behaviour. Br. Med. Bull. 37:159‐164.
   Bignami, G. 1996. Economical test methods for developmental neurobehavioral toxicity. Environ. Health Perspect. 104:285‐298.
   Branchi, I. and Ricceri, L. 2002. Transgenic and knock‐out mouse pups: Growing need for behavioral analysis. Genes Brain Behav. 1:135‐141.
   Buelke‐Sam, J., Kimmel, G.L., and Adams, J., (eds.) 1985. Design considerations in screening for behavioral teratogens: Results of the Collaborative Behavior Teratology Study. Neurobehav. Toxicol. Teratol. 7:537‐789
   Calamandrei, G., Valanzano, A., and Alleva, E. 1991. NGF and cholinergic control of behavior: Anticipation and enhancement of scopolamine effects in neonatal mice. Brain Res. Dev. Brain Res. 61:237‐241.
   Capone, F., Puopolo, M., Branchi, I., and Alleva, E. 2002. A new easy accessible and low‐cost method for screening olfactory sensitivity in mice: Behavioural and nociceptive response in male and female CD‐1 mice upon exposure to millipede aversive odour. Brain Res. Bull. 58:193‐202.
   Carman, H.M. and Mactutus, C.F. 2001. Ontogeny of spatial navigation in rats: A role for response requirements? Behav. Neurosci. 115:870‐879.
   Cenci, M.A., Whishaw, I.Q., and Schallert, T. 2002. Animal models of neurological deficits: How relevant is the rat? Nat. Rev. Neurosci. 3:574‐579.
   Chiarotti, F. and Sparks, T. 2000. Problems of behavioural teratology of rodents. In Behavioral Ecotoxicology (G. Dell'Omo, ed.) pp. 273‐289. John Wiley & Sons, Chichester, U.K.
   Chiarotti, F., Alleva, E., and Bignami, G. 1987. Problems of test choice and data analysis in behavioral teratology: The case of prenatal benzodiazepines. Neurotoxicol. Teratol. 9:179‐186.
   Crawley, J.N. 2000. What's Wrong with My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice. Wiley‐Liss, New York.
   Crawley, J.N. 2003. Behavioral phenotyping of rodents. Comp. Med. 53:140‐146.
   Crews, D. 1997. Species diversity and the evolution of behavioral controlling mechanisms. Ann. N.Y. Acad. Sci. 807:1‐21.
   Crusio, W.E. and Gerlai, R.T. (eds.) 1999. Handbook of Molecular‐Genetic Techniques for Brain and Behavior Research. Elsevier, Amsterdam.
   Cuomo, V., De Salvia, M.A., Petruzzi, S., and Alleva, E. 1996. Appropriate end points for the characterization of behavioral changes in developmental toxicology. Environ. Health Perspect. 104:307‐315.
   Darwin, C. 1872. The Expression of Emotions in Man and Animals, 1998 ed. Oxford University Press, Oxford, U.K..
   D'Udine, B. and Alleva, E. 1988. The Acomys cahirinus (spiny mouse) as a new model for biological and neurobehavioural studies. Pol. J. Pharmacol. Pharm. 40:525‐534.
   File, S.E. 2001. Factors controlling measures of anxiety and responses to novelty in the mouse. Behav. Brain Res. 125:151‐157.
   Fox, W.M. 1965. Reflex‐ontogeny and behavioral development of the mouse. Anim. Behav. 13:234‐240.
   Frick, K.M., Stillner, E.T., and Berger‐Sweeney, J. 2000. Mice are not little rats: Species differences in a one‐day water maze task. Neuroreport 11:3461‐3465.
   Garcia, J., and Koelling, R.A. 1966. Relation of cue to consequence in avoidance learning. Psychonomic Sci. 4:123‐124.
   Gerlai, R. and Clayton, N.S. 1999. Analysing hippocampal function in transgenic mice: An ethological perspective. Trends Neurosci. 22:47‐51.
   Iivonen, H., Nurminen, L., Harri, M., Tanila, H., and Puolivali, J. 2003. Hypothermia in mice tested in Morris water maze. Behav. Brain Res. 141:207‐213.
   Kamil, A.C. and Mauldin, J.E. 1988. A comparative‐ecological approach to the study of learning. In Evolution and Learning (R.C. Bolles and M.D. Beecher, eds.) Lawrence Erlbaum Associates, Hillsdale, N.J.
   Katz, P.S. and Harris‐Warrick, R.M. 1999. The evolution of neuronal circuits underlying species‐specific behavior. Curr. Opin. Neurobiol. 9:628‐633.
   Kulig, B., Alleva, E., Bignami, G., Cohn, J., Cory‐Slechta, D., Landa, V., O'Donoghue, J., and Peakall, D. 1996. Animal behavioral methods in neurotoxicity assessment: SGOMSEC joint report. Environ. Health Perspect. 104:193‐204.
   Marascuilo, L.A. and McSweeney, M. 1971. Nonparametric and Distribution‐Free Methods for the Social Sciences. Brooks/Cole Publishing Company, Monterey, Calif.
   Martin, P. and Bateson, P. 1993. Measuring Behaviour: An Introductory Guide, 2nd ed. Cambridge University Press, Cambridge, U.K.
   Pintor, A., Alleva, E., and Michalek, H. 1986. Postnatal maturation of brain cholinergic systems in the precocial murid Acomys cahirinus: Comparison with the altricial rat. Int. J. Dev. Neurosci. 4:375‐382.
   Ricceri, L., Calamandrei, G., and Berger‐Sweeney, J. 1997. Different effects of postnatal day 1 versus 7 192 immunoglobulin G‐saporin lesions on learning, exploratory behaviors, and neurochemistry in juvenile rats. Behav. Neurosci. 111:1292‐1302.
   Ricceri, L., Usiello, A., Valanzano, A., Calamandrei, G., Frick, K., and Berger‐Sweeney, J. 1999. Neonatal 192 IgG‐saporin lesions of basal forebrain cholinergic neurons selectively impair response to spatial novelty in adult rats. Behav. Neurosci. 113:1204‐1215.
   Rodgers, R.J. and Johnson, N.J. 1995. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus‐maze test of anxiety. Pharmacol. Biochem. Behav. 52:297‐303.
   Rogers, D.C., Fisher, E.M., Brown, S.D., Peters, J., Hunter, A.J., and Martin, J.E. 1997. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome. 8:711‐713.
   Russell, W.M.S. and Burch, R.L. 1959. The Principle of Humane Experimental Techniques. Methuen, London.
   Schenk, F. 1987. Comparison of spatial learning in woodmice (Apodemus sylvaticus) and hooded rats (Rattus norvegicus). J. Comp. Psychol. 101:150‐158.
   Scott, J.P. 1953. The development of social behavior patterns in the mouse, in relation to natural periods. Behaviour 6:35‐65.
   Sharp, P.E., and La Regina, M.C. 1998. The Laboratory Rat. CRC Press, Boca Raton, Fla.
   Spyker, J.M. 1975. Behavioral teratology and toxicology. In Behavioral Toxicology (B. Weiss, and V.G. Laties, eds.) pp. 311‐349. Plenum Press, New York.
   van der Staay, F.J. 2000. Effects of the size of the morris water tank on spatial discrimination learning in the CFW1 mouse. Physiol. Behav. 68:599‐602.
   Vitale, A. and Alleva, E. 1999. Ethological and welfare considerations in the study of aggression in rodents and nonhuman primates. In Animal Models of Human Emotion and Cognition (M. Haug and R.E. Whalen, eds.) pp 283‐295. American Psychological Association, Washington, D.C.
   Watase, K. and Zoghbi, H.Y. 2003. Modelling brain diseases in mice: The challenges of design and analysis. Nat. Rev. Genet. 4:296‐307.
   Whishaw, I.Q. 1995. A comparison of rats and mice in a swimming pool place task and matching to place task: Some surprising differences. Physiol. Behav. 58:687‐693.
   Whishaw, I.Q. and Tomie, J.A. 1996. Of mice and mazes: Similarities between mice and rats on dry land but not water mazes. Physiol. Behav. 60:1191‐1197.
   Winer, B.J. 1971. Statistical principles in experimental design. McGraw‐Hill Kogakusha, Tokyo.
   Wolfer, D.P., Stagljar‐Bozicevic, M., Errington, M.L., and Lipp, H.P. 1998. Spatial memory and learning in transgenic mice: Fact or artifact? News Physiol. Sci. 13:118‐123.
   World Health Organization (WHO). 1986. Principles for Evaluating Health Risks from Chemicals During Infancy and Early Childhood: The Need for a Special Approach. World Health Organization Press. Geneva.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library