Immune Cell Phenotyping Using Flow Cytometry

A. Graham Pockley1, Gemma A. Foulds2, Julie A. Oughton3, Nancy I. Kerkvliet3, Gabriele Multhoff4

1 Electric Works, Sheffield, 2 Nottingham Trent University, Nottingham, 3 Oregon State University, Corvallis, 4 German Research Center for Environmental Health, Neuherberg
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 18.8
DOI:  10.1002/0471140856.tx1808s66
Online Posting Date:  November, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Fluorescent immunophenotyping uses fluorescently‐conjugated antibodies to identify, characterize and quantify distinct subpopulations of cells within heterogeneous single‐cell populations, either in the context of tissue (using fluorescence and imaging microscopy) or in a single‐cell suspension (using multiparameter imaging microscopy, imaging cytometry, and/or flow cytometry). Flow cytometry is an optical, laser‐based technology which analyzes the physical and fluorescent properties of cells in suspension in real‐time as they flow through the instrument. This approach has a number of advantages over other techniques that can be used for characterizing cell populations in single‐cell suspensions, in that it can nonsubjectively interrogate up to millions of cells and acquire data on the presence of different cell subpopulations and phenotypical changes within these populations in seconds. This unit describes basic procedures for the direct and indirect immunofluorescent staining of surface and intracellular proteins that are expressed by lymphoid cells which have been isolated from tissues or blood. Protocols for the resolution of dead cells and for the fixation of cells are also included. This unit also provides essential information relating to the selection and titration of antibodies, fluorochrome choice, spectral overlap and compensation, the use of controls, and the standardization of data acquisition and analysis. It also highlights new technologies and platforms that can be used to interrogate the presence of cell subpopulations and their phenotype to an even greater depth. © 2015 by John Wiley & Sons, Inc.

Keywords: flow cytometry; immune phenotyping; toxicology; cell analysis; methodology

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Direct Staining of Cells Prepared From Lymphoid Tissues
  • Alternate Protocol 1: Indirect Staining of Cells Prepared From Lymphoid Cells
  • Support Protocol 1: Preparation of Cells From Lymphoid Organs
  • Support Protocol 2: Cell Fixation
  • Basic Protocol 2: Staining of Peripheral Blood Leukocytes
  • Support Protocol 3: Assessment of Cell Viability
  • Support Protocol 4: Titration to Determine Optimum Antibody Concentration
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Direct Staining of Cells Prepared From Lymphoid Tissues

  Materials
  • Tissue of interest (e.g., lymphoid cells; see protocol 3)
  • Fc receptor (FcR)‐blocking immunoglobulin (Ig; e.g., normal rat IgG) solution, 200 μg/ml or specific Fc blocking reagents that are suitable for use in the species of interest
  • MAbs or isotype Igs directly conjugated to fluorochromes
  • PBS supplemented with 0.1% (w/v) sodium azide and bovine serum albumin (PAB; see recipe)
  • Micropipettor or multichannel pipettor with tips
  • 96‐well V‐bottom microtiter plates, disposable 12 × 75–mm polystyrene tubes, or microcentrifuge tubes
  • Centrifuge, refrigerated and equipped with a microtiter plate carrier
  • Vacuum aspiration system (optional)
  • Vortex equipped with a platform head for a microtiter plate
  • Titertube (Bio‐Rad Laboratories; optional)
  • Additional reagents and equipment for preparation of lymphocyte suspension to be analyzed (see protocol 3)

Alternate Protocol 1: Indirect Staining of Cells Prepared From Lymphoid Cells

  Additional Materials (see also protocol 1)
  • Unconjugated primary MAb or biotin‐labeled primary MAb
  • Fluorochrome‐conjugated anti‐Ig F(ab′) 2 fragment (for use with unconjugated primary MAb) or fluorochrome‐conjugated streptavidin (for use with biotin‐labeled primary MAb)

Support Protocol 1: Preparation of Cells From Lymphoid Organs

  Materials
  • Lymphoid organ of interest
  • HBSS supplemented with 5% (v/v) FBS (5% HBSS; see recipe)
  • Endotoxin‐screened distilled water for cell culture (e.g., Gibco)
  • 10× HBSS (e.g., Sigma)
  • Ammonium chloride (ACK) lysing buffer (optional; see recipe)
  • 60 × 15–mm untreated culture dish
  • 25 × 75 × 1–mm frosted glass microscope slides
  • 15‐ml conical centrifuge tubes
  • 12 × 75–mm disposable cell culture tubes
  • Vortex
  • Cell counting platform (e.g., Coulter counter or hemacytometer)

Support Protocol 2: Cell Fixation

  Additional Materials (see also protocol 1)
  • 1% (w/v) formaldehyde: 10% (v/v) Ultrapure EM‐grade formaldehyde (e.g., Polysciences) diluted 1:10 in PAB (see recipe), or other commercially‐available fixation solutions
  • 40‐μm nylon mesh (optional)

Basic Protocol 2: Staining of Peripheral Blood Leukocytes

  Materials
  • Animals of interest
  • Sodium heparin, 250 IU per ml in PBS ( appendix 2A)
  • PBS supplemented with 0.1% (w/v) sodium azide and bovine serum albumin (PAB; see recipe)
  • FcR‐blocking Ig solution, 2 mg/ml (note that concentration differs from that used in protocol 1)
  • Appropriate primary MAbs and (if necessary) secondary antibodies
  • Red blood cell/erythrocyte lysing solution, diluted appropriately according to the manufacturer's instructions.
  • 1‐ml syringe equipped with 22‐G needle
  • Cell counting platform (e.g., Coulter counter or hemacytometer)
  • Disposable 12 × 75–mm polystyrene tubes
  • Centrifuge
  • Vortex
NOTE: Staining conditions are similar to those noted in protocol 1. However, all staining procedures should be performed in 12 × 75–mm polystyrene tubes, not in microtiter plates.NOTE: Be sure to protect samples from light during incubation with fluorochrome‐conjugated MAbs.

Support Protocol 3: Assessment of Cell Viability

  Materials
  • Cells of interest
  • Nuclear staining compound dissolved in PBS ( appendix 2A): 200 μg/ml PI, 250 μg/ml 7‐AAD, 250 μg/ml TO‐PRO‐3 (e.g., Molecular Probes), or 200 μg/ml PY(G)
  • 12 × 75–mm polystyrene tubes
  • Flow cytometer

Support Protocol 4: Titration to Determine Optimum Antibody Concentration

  Materials
  • Lymphoid cell suspension of interest (see protocol 3)
  • Fc receptor (FcR)‐blocking immunoglobulin (Ig) solution, 200 μg/ml
  • Fluorochrome‐conjugated antibody solutions to be tested
  • 96‐well microtiter plate
  • Centrifuge fitted with a microtiter plate adapter
  • Vortex fitted with a microtiter plate adapter
  • Flow cytometer with appropriate analysis software
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Addison, E.G., North, J., Bakhsh, I., Marden, C., Haq, S., Al‐Sarraj, S., Malayeri, R., Wickremasinghe, R.G., Davies, J.K., and Lowdell, M.W. 2005. Ligation of CD8 alpha on human natural killer cells prevents activation‐induced apoptosis and enhances cytolytic activity. Immunology 116:354‐361. doi: 10.1111/j.1365‐2567.2005.02235.x.
  Barteneva, N.S. and Vorobjev, I.A. (eds.) 2015. Imaging Flow Cytometry: Methods and Protocols. Humana Press, Totowa, N.J. In press.
  Bergeron, M., Shafaie, A., Ding, T., Phaneuf, S., Soucy, N., Mandy, F., Bradley, J., and Fahey, J. 2002. Evaluation of stabilized blood cell products as candidate preparations for quality assessment programs for CD4 T‐cell counting. Cytometry 50:86‐91. doi: 10.1002/cyto.10090.
  Boland, J.W., Foulds, G.A., Ahmedzai, S.H., and Pockley, A.G. 2014. A preliminary evaluation of the effects of opioids on innate and adaptive human in vitro immune function. BMJ Support. Palliat. Care 4:357‐367. doi: 10.1136/bmjspcare‐2013‐000573.
  Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman, W.H., Stankevich, E., Pons, A., Salay, T.M., McMiller, T.L., Gilson, M.M., Wang, C., Selby, M., Taube, J.M., Anders, R., Chen, L., Korman, A.J., Pardoll, D.M., Lowy, I., and Topalian, S.L. 2010. Phase I study of single‐agent anti‐programmed death‐1 (MDX‐1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28:3167‐3175. doi: 10.1200/JCO.2009.26.7609.
  Bushnell, T.P. 2015. Modern Flow Cytometry. Expert Cytometry, eBook. http://expertcytometry.com/ebook/
  Canonico, B., Betti, M., Luchetti, F., Battistelli, M., Falcieri, E., Ferri, P., Zamai, L., Barnett, D., and Papa, S. 2010. Flow cytometric profiles, biomolecular and morphological aspects of transfixed leukocytes and red cells. Cytometry B 78:267‐278.
  Choi, J.‐Y., Oughton, J.A., and Kerkvliet, N.I. 2003. Functional alterations in CD11b+Gr‐1+ cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8‐tetrachlorodibenzo‐pdioxin. Int. Immunopharmacol. 3:553‐570. doi:10.1016/S1567‐5769(03)00046‐8.
  Darzynkiewicz, Z., Robinson, J.P., and Roederer, M. (eds) 2009. Essential Cytometry Methods, 1st ed. Academic Press, San Diego.
  Fienberg, H.G. and Nolan, G.P. (eds.) 2014. High‐Dimensional Single Cell Analysis: Mass Cytometry, Multi‐Parametric Flow Cytometry and Bioinformatic Technique. Springer, New York.
  Foulds, G. 2015. Characterising the internalisation of theranostic agents via membrane heat shock protein 70 (Hsp70) by cancer cells using flow cytometry and image analysis platforms. PhD dissertation, University of Sheffield.
  Funatake, C.J., Dearstyne, E.A., Steppan, L.B., Shepherd, D.M., Spanjaard, E.S., Marshak‐Rothstein, A., and Kerkvliet, N.I. 2004. Early consequences of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin exposure on the activation and survival of antigen‐specific T cells. Toxicol. Sci. 82:129‐142. doi: 10.1093/toxsci/kfh245.
  Gerner, W., Kaser, T., Pintaric, M., Groiss, S., and Saalmuller, A. 2008. Detection of intracellular antigens in porcine PBMC by flow cytometry: A comparison of fixation and permeabilisation reagents. Vet. Immunol. Immunopathol. 121:251‐259. doi: 10.1016/j.vetimm.2007.09.019.
  Givan, A.L. 2001. Flow Cytometry: First Principles, 2nd ed. Wiley‐Liss, New York.
  Green, C.L., Brown, L., Stewart, J.J., Xu, Y., Litwin, V., and McCloskey, T.W. 2011. Recommendations for the validation of flow cytometric testing during drug development: I instrumentation. J. Immunol. Methods 363:104‐119. doi: 10.1016/j.jim.2010.07.004.
  Hawley, T.S. and Hawley, R.G. (eds). 2010. Flow Cytometry Protocols, 3rd ed. Humana Press, Totowa, N.J.
  Immunotoxicology Technical Committee and Environmental Sciences. 2001. Application of flow cytometry to immunotoxicity testing: Summary of a workshop. Toxicology 163:39‐48. doi: 10.1016/S0300‐483X(01)00364‐X.
  Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., Redfern, C.H., Ferrari, A.C., Dreicer, R., Sims, R.B., Xu, Y., Frohlich, M.W., Schellhammer, P.F., and Investigators, I.S. 2010. Sipuleucel‐T immunotherapy for castration‐resistant prostate cancer. N. Engl. J. Med. 363:411‐422. doi: 10.1056/NEJMoa1001294.
  Kerkvliet, N.I. and Brauner, J.A. 1990. Flow cytometric analysis of lymphocyte subpopulations in the spleen and thymus of mice exposed to an acute immunosuppressive dose of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD). Environ. Res. 52:146‐154. doi: 10.1016/S0013‐9351(05)80249‐X.
  Latek, R., Fleener, C., Lamian, V., Kulbokas, E., 3rd, Davis, P.M., Suchard, S.J., Curran, M., Vincenti, F., and Townsend, R. 2009. Assessment of belatacept‐mediated costimulation blockade through evaluation of CD80/86‐receptor saturation. Transplantation 87:926‐933. doi: 10.1097/TP.0b013e31819b5a58.
  Litwin, V. and Marder, P. (eds.) 2010. Flow Cytometry in Drug Discovery and Development. John Wiley & Sons, Hoboken, N.J.
  Luster, M.I., Portier, C., Pait, D.G., Rosenthal, G.J., Germolec, D.R., Corsini, E., Blaylock, B.L., Pollock, P., Kouchi, Y., Craig, W., White, K.L., Munson, A.E., and Comment, C.E. 1993. Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam. Appl. Toxicol. 21:71‐82. doi: 10.1006/faat.1993.1074.
  Macey, M.G. (ed.) 2007. Flow Cytometry: Principles and Applications. Humana Press, Totowa, N.J.
  Millard, I., Degrave, E., Philippe, M., and Gala, J.L. 1998. Detection of intracellular antigens by flow cytometry: Comparison of two chemical methods and microwave heating. Clin. Chem. 44:2320‐2330.
  Mitchell, K.A. and Lawrence, B.P. 2003. Exposure to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) renders influenza virus‐specific CD8+ T cells hyporesponsive to antigen. Toxicol. Sci. 74:74‐84. doi: 10.1093/toxsci/kfg110.
  Moretta, L., Montaldo, E., Vacca, P., Del Zotto, G., Moretta, F., Merli, P., Locatelli, F., and Mingari, M.C. 2014. Human natural killer cells: Origin, receptors, function, and clinical applications. Int. Arch. Allergy Immunol. 164:253‐264. doi: 10.1159/000365632.
  Nguyen, R., Perfetto, S., Mahnke, Y.D., Chattopadhyay, P., and Roederer, M. 2013. Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 83:306‐315. doi: 10.1002/cyto.a.22251.
  Nygaard, U.C. and Lovik, M. 2002. Blood and spleen lymphocytes as targets for immunotoxic effects in the rat–a comparison. Toxicology 174:153‐161. doi: 10.1016/S0300‐483X(02)00033‐1.
  O'Hara, D.M., Xu, Y., Liang, Z., Reddy, M.P., Wu, D.Y., and Litwin, V. 2011. Recommendations for the validation of flow cytometric testing during drug development: II assays. J. Immunol. Methods 363:120‐134. doi: 10.1016/j.jim.2010.09.036.
  Ormerod, M. (ed.) 2000. Flow Cytometry: A Practical Approach, 3rd ed. Oxford University Press, Oxford.
  Oughton, J.A., Pereira, C.B., DeKrey, G.K., Collier, J.M., Frank, A.A., and Kerkvliet, N.I. 1995. Phenotypic analysis of spleen, thymus, and peripheral blood cells in aged C57B1/6 mice following long‐term exposure to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin. Fundam. Appl. Toxicol. 25:60‐69. doi: 10.1006/faat.1995.1040.
  Papagno, L., Almeida, J.R., Nemes, E., Autran, B., and Appay, V. 2007. Cell permeabilization for the assessment of T lymphocyte polyfunctional capacity. J. Immunol. Methods 328:182‐188. doi: 10.1016/j.jim.2007.09.001.
  Robinson, A.P., Rodgers, J.M., Goings, G.E., and Miller, S.D. 2014. Characterization of oligodendroglial populations in mouse demyelinating disease using flow cytometry: Clues for MS pathogenesis. PLoS ONE 9:e107649.
  Roederer, M. 2000. Compensation in Flow Cytometry: An Informal Perspective. http://www.drmr.com/compensation.
  Roederer, M. 2002. Compensation in flow cytometry. Curr. Protoc. Cytom. 1.14.1‐1.14.20. doi: 10.1002/0471142956.cy0114s22.
  Roederer, M. 2011. Multiple stained samples are not appropriate compensation controls. Cytometry A 79:591‐593. doi: 10.1002/cyto.a.21093.
  Roth, B. (ed.) 2015. Flow Cytometry: Current Aspects. Callisto Reference, New York.
  Shapiro, H.M. 2003. Practical Flow Cytometry, 4th ed. John Wiley & Sons, Hoboken, N.J.
  Shepherd, D.M., Dearstyne, E.A., and Kerkvliet, N.I. 2000. The effects of TCDD on the activation of ovalbumin (OVA)‐specific DO11.10 transgenic CD4+ T cells in adoptively transferred mice. Toxicol. Sci. 56:340‐350. doi: 10.1093/toxsci/56.2.340.
  Stewart, C.C. and Stewart, S.J. 2001a. Cell preparation for the identification of leukocytes. In Methods in Cell Biology, Vol. 63 (Z. Darzynkiewicz, H.A. Crissman, and J.P. Robinson, eds.) pp. 217‐251. Academic Press, San Diego.
  Stewart, C.C. and Stewart, S.J. 2001b. Multiparameter data acquisition and analysis of leukocytes by flow cytometry. In Methods in Cell Biology, Vol. 63 (Z. Darzynkiewicz, H.A. Crissman, and J.P. Robinson, eds.) pp. 289‐312. Academic Press, San Diego.
  Tárnok, A. (ed.) 2015. Optimized Multicolor Immunofluorescence Panel (OMIP). John Wiley & Sons, Hoboken, N.J. http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291552‐4930/homepage/information_on_omips.htm.
  Tong, D.L., Ball, G.R., and Pockley, A.G. 2015. gEM/GANN: A multivariate computational strategy for auto‐characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high‐dimensional flow cytometry data. Cytometry A 87:616‐623. doi: 10.1002/cyto.a.22622.
  Vandebriel, R.J., Spiekstra, S.W., Hudspith, B.N., Meredith, C., and Van Loveren, H. 1999. In vitro exposure effects of cyclosporin A and bis(tri‐n‐butyltin)oxide on lymphocyte proliferation, cytokine (receptor) mRNA expression, and cell surface marker expression in rat thymocytes and splenocytes. Toxicology 135:49‐66. doi: 10.1016/S0300‐483X(99)00049‐9.
  Webster, G.A. and Pockley, A.G. 1993. Effect of red cell lysis protocols on the expression of rat peripheral blood lymphocyte subset and activation antigens. J. Immunol. Methods 163:115‐121. doi: 10.1016/0022‐1759(93)90245‐3.
  Zelnickova, P., Faldyna, M., Stepanova, H., Ondracek, J., and Kovaru, F. 2007. Intracellular cytokine detection by flow cytometry in pigs: Fixation, permeabilization and cell surface staining. J. Immunol. Methods 327:18‐29. doi: 10.1016/j.jim.2007.07.006.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library