Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells

Peace C. Ezeh1, Huan Xu2, Shu Chun Wang2, Sebastian Medina2, Scott W. Burchiel2

1 Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 2 College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 18.9
DOI:  10.1002/0471140856.tx1809s67
Online Posting Date:  February, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Development of blood cells through hematopoiesis occurs in the bone marrow (BM), and can be adversely impacted by various substances and/or conditions ranging from known therapeutic, intentionally administered xenobiotics to unintentional food additives and exposure to environmental chemicals. The principles underlying the techniques for evaluating toxicity to BM progenitors (erythroid, myeloid, and lymphoid) exploit changes in the normal hematopoietic process, biochemical cell surface and intracellular markers, as well as components of the BM microenvironment. Toxicological investigations following in vivo exposures of mice or in vitro exposures of mouse primary BM cell cultures allow the assessment of the developmental and functional integrity of BM cells, cell population shifts, and adverse biochemical effects due to toxicity. Colony forming unit (CFU) assays and flow cytometry are indispensable techniques in these toxicity studies. © 2016 by John Wiley & Sons, Inc.

Keywords: bone marrow toxicology; hematopoiesis; progenitor cell differentiation; CFU assays; surface and intracellular staining

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Mouse Femur Harvest and Bone Marrow Cell Isolation
  • Basic Protocol 2: Assessment of Bone Marrow‐Derived Lymphoid and Myeloid Progenitor Cell Activity In Vitro
  • Basic Protocol 3: Mouse Bone Marrow Cell Surface Markers and Intracellular Staining by Flow Cytometry
  • Reagents And Solutions
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Mouse Femur Harvest and Bone Marrow Cell Isolation

  Materials
  • C57BL/6 J mice, 12 to 16 weeks old (The Jackson Laboratory)
  • 70% (v/v) ethanol
  • 1× Hanks Balanced Salt Solution (HBSS; appendix 2A)
  • Ice
  • Isocove's Modified Dulbecco's Medium (IMDM) with 2% heat‐inactivated FBS (see recipe)
  • Acridine orange/propidium iodide (or other appropriate stain, e.g., trypan blue)
  • CO 2 euthanasia chamber
  • Animal scale
  • Dissection board
  • Sterile surgical instruments including:
  • Scissors
  • Scalpels
  • Forceps
  • Push pins
  • 15‐ml tubes
  • 60 × 15—mm petri dishes, sterile
  • 1‐ml syringe equipped with 25‐G × 15.8‐mm needle
  • 9‐in. Pasteur pipets
  • Automated or manual cell counter
  • Centrifuge

Basic Protocol 2: Assessment of Bone Marrow‐Derived Lymphoid and Myeloid Progenitor Cell Activity In Vitro

  Materials
  • MethoCult GF M3534 (Stem Cell Technologies) for CFU‐GM assay
  • Mouse methylcellulose complete media (R&D Systems) for CFU‐B assay
  • MethoCult M3334 (Stem Cell Technologies) for CFU‐E assay
  • Sterile water
  • 16‐ml (17 × 100‐mm)‐tubes, sterile
  • Vortex mixer
  • 35‐mm sterile petri dishes
  • Treated 35‐mm cell culture dishes (Stem Cell Technologies)
  • 3‐ml syringes with 16‐G × 3.8‐cm Monoject aluminum hub blunt cannula needle
  • 100‐mm petri dishes
  • 37°C, 5% CO 2 humidified incubator
  • Automated or manual cell counter

Basic Protocol 3: Mouse Bone Marrow Cell Surface Markers and Intracellular Staining by Flow Cytometry

  Materials
  • Fluorochrome‐conjugated antibodies
  • Bone marrow cells
  • Wash buffer: Dulbecco's phosphate‐buffered saline (DPBS) w/o Ca+2 and Mg+2 containing 1% FBS and 0.9% sodium azide
  • Ammonium chloride lysing solution (1.5 M ammonium chloride, 100 mM sodium bicarbonate, 10 mM disodium EDTA, pH 7.4)
  • 4% paraformaldehyde (see recipe) or cell fixative manufactured solutions (e.g., IC Fixation buffer from eBiosciences)
  • 90% methanol at −20°C
  • Isotope control
  • Centrifuge
  • Flow cytometer
  • Flow tubes
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Burchiel, S.W., Hadley, W.M., Barton, S.L., Fincher, R.H., Lauer, L.D., and Dean, J.H. 1988. Persistent suppression of humoral immunity produced by 7, 12‐dimethylbenz (a) anthracene (DMBA) in B6C3F1 mice: Correlation with changes in spleen cell surface markers detected by flow cytometry. Int. J. Immunopharmacol. 10:369‐376. doi: 10.1016/0192‐05619(88)90123‐3.
  Casado, F.L., Singh, K.P., and Gasiewicz, T.A. 2011. Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway‐specific gene modulation reflecting changes in cellular trafficking and migration. Mol. Pharmacol. 80:673‐682. doi: 10.1124/mol.111.071381.
  Cunha, M.C.R., Lima, F.S., Vinolo, M.A.R., Hastreiter, A., Curi, R., Borelli, P., and Fock, R.A. 2013. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation. PloS ONE 8:e58872. doi: 10.1371/journal.pone.0058872.
  Ezeh, P.C., Lauer, F.T., Liu, K.J., Hudson, L.G., and Burchiel, S.W. 2015. Arsenite interacts with DBC at low levels to suppress bone marrow lymphoid progenitors in mice. Biol. Trace Elem. Res. 166:82‐88. doi: 10.1007/s12011‐015‐0279‐6.
  Ezeh, P.C., Lauer, F.T., Mackenzie, D., McClain, S., Liu, K.J., Hudson, L.G., Gandolfi, A.J, and Burchiel, S. 2014. Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PloS ONE. 9:e93920. doi: 10.1371/journal.pone.0093920. doi: 10.1371/journal.pone.0093920.
  Fantuzzi, G. and Faggioni, R. 2000. Leptin in the regulation of immunity, inflammation and hematopoiesis. J. Leukoc. Biol. 68:437‐446.
  Gasiewicz, T.A., Singh, K.P., and Casado, F.L. 2010. The aryl hydrocarbon receptor has an important role in the regulation of hematopoiesis: Implications for benzene‐induced hematopoietic toxicity. Chem. Biol. Interact. 184:246‐251. doi: 10.1016/j.cbi.2009.10.019.
  Harmening, D.M. 2009. Clinical hematology and fundamentals of hematostasis, 5th edition. F.A. Davis Company.
  Iversen, P.O. 1997. Blood flow to the haematopoietic bone marrow. Acta Physiol. Scand. 159:269‐276. doi: 10.1046/j.1365‐201X.1997.00107.x.
  Koulnis, M., Pop, R., Porpiglia, E., Shearstone, J.R., Hidalgo, D., and Socolovsky, M. 2011. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow‐cytometric assay. J. Vis. Exp. 54:e2809. PMCID: PMC3211121.
  Molineux, G., Foote, M., and Eliott, S. 2009. Erythropoiesis and Erythropoietins. Second Edition. Birkhauser.
  N'jai, A.U., Larsen, M., Shi, L., Jefcoate, C.R., and Czuprynski, J.C. 2010. Bone marrow lymphoid and myeloid progenitor cells are suppressed in 7, 12 dimethylbenz(a)anthracene (DMBA) treated mice>. Toxicology 271:27‐35. doi: 10.1016/j.tox.2010.02.009.
  Scharf, R.E. and Aul, C. 1988. Alcohol‐induced disorders of the hematopoietic system. Z. Gastroenterol. 26(Suppl 3):75‐83.
  Sommadossi, J.P. and Carlisle, R. 1987. Toxicity of 3'‐azido‐3'‐deoxythymidine and 9‐(1,3‐dihydroxy‐2‐propoxymethyl)guanine for normal human hematopoietic progenitor cells in vitro. Antimicrob. Agents. Chemother. 31:452‐454. doi: 10.1128/AAC.31.3.452.
  Till, J.E. and McCulloch, E.A. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14:213‐222. doi: 10.2307/3570892.
  Tong, W., Zang, J., and Lodish, H.F. 2005. Lnk inhibits erythropoiesis and Epo‐dependent JAK2 activation and downstream signaling pathways. Blood 105:4604‐4612. doi: 10.1182/blood‐2004‐10‐4093.
  Tung, J.W., Heydari, K., Tirouvanziam, R., Sahaf, B., Parks, D.R., Herzenberg, L.A., and Herzenberg, L.A. 2007. Modern flow cytometry: A practical approach. Clin. Lab. Med. 27:453‐468. doi: 10.1016/j.cll.2007.05.001.
Internet Resources
  http://www.stemcell.com/~/media/Technical%20Resources/8/3/E/9/0/28405_methocult%20M.pdf
  STEMCELL Technologies, Mouse Colony‐Forming Unit (CFU) Assays Using MethoCult.
  https://www.rndsystems.com/products/mouse‐methylcellulose‐complete‐media‐for‐pre‐b‐cells_hsc009#dsTab1
  R&D Systems, Mouse Methylcellulose Complete Media for Pre‐B Cells.
  http://www.bdbiosciences.com/us/s/spectrumviewer
  BD Fluorescence Spectrum Viewer.
  http://www.bdbiosciences.com/us/panelDesign
  BD FACSelect Multicolor Panel Designer.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library