In Vitro Assays of Chemotaxis as a Window into Mechanisms of Toxicant‐Induced Immunomodulation

Kathryn M. Pietrosimone1, Sadikshya Bhandari1, Michael G. Lemieux1, David A. Knecht1, Michael A. Lynes1

1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 18.17
DOI:  10.1002/0471140856.tx1817s58
Online Posting Date:  November, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Dysregulated cell movement can lead to developmental abnormalities, neoplasia, and immune system disorders, and there are a variety of contexts in which xenobiotics (and biologic) effects on this movement are of interest. Many toxins and toxicants have been shown to disrupt controlled cell movement. Identification of compounds that affect cell movement is crucial to drug discovery. Drug components may have unexpected consequences with respect to cell motility, which would exclude these compounds in drug development. Finally, the development of drugs that target chemotactic pathways may be useful in the treatment of tumors, which often reprogram chemotactic pathways to become metastatic. The effects of these agents on cell movement can be measured using several different in vitro chemotactic assays. This review details the procedures of three in vitro measurements of chemotaxis: the Boyden chamber, the under‐agarose assay, and the automated, real‐time, ECIS/Taxis assay, and discusses the inferences that can be drawn from the results of such studies. Curr. Protoc. Toxicol. 58:18.17.1‐18.17.24. © 2013 by John Wiley & Sons, Inc.

Keywords: chemotaxis; immunomodulation; in vitro; mechanism; toxicant; chemokine

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Boyden Chamber Assay Using a 48‐Well Chemotaxis Chamber
  • Basic Protocol 2: Under‐Agarose Real‐Time Imaging Assay
  • Basic Protocol 3: ECIS/Taxis Assay
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Boyden Chamber Assay Using a 48‐Well Chemotaxis Chamber

  • Chemoattractant: Stromal cell–derived factor 1α (SDF‐1α; R&D Systems, cat. no. 350‐NS‐010)
  • Incomplete RPMI medium (see recipe)
  • Jurkat T cells (ATCC, cat no. T1B‐152)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Hema 3 Stat Pack (Fisher Scientific, cat. no. 23‐123‐869)
  • Neuro Probe 48‐well chemotaxis chamber (Neuro Probe Inc., cat. no. AP48;
  • Polycarbonate membranes, PVP‐free, 5 μm (Neuro Probe Inc., cat. no. PFB5‐50;
  • Forceps
  • Shallow plastic containers to accommodate polycarbonate membrane
  • Glass slides (∼5 × 8–cm; Fisher Scientific)
  • Microscope

Basic Protocol 2: Under‐Agarose Real‐Time Imaging Assay

  • SeaKem GTG Agarose (BioWhittaker Molecular Applications, cat. no. 50070)
  • Jurkat T cells (ATCC, cat no. T1B‐152)
  • Chemoattractant: Stromal cell–derived factor 1α (SDF‐1α; R&D Systems, cat. no. 350‐NS‐010)
  • Complete RPMI medium (see recipe)
  • 70% ethanol
  • 1 M HEPES buffer, cell culture grade (MP Biomedicals, cat. no. 1688449)
  • Spatula
  • 4‐chamber ibiTreat μ‐slide (ibidi, cat. no. 80426,
  • Cannula cutting tools (prepared as described in protocol 3)
  • 9‐in. Pasteur pipet
  • Vacuum trap and low‐vacuum source
  • Razor blades
  • 18‐mm2 glass cover slips (Fisher Scientific, cat. no. 12‐541A)
  • Forceps
  • Nikon TIE microscope (Nikon Instruments)
  • Bold Line Cage Incubator (Okolabs, cat. no. H201)
  • Andor Clara CCD camera (Andor Technologies)
  • LiveCell Stage Top Incubation Platform (Pathology Devices,
  • Micro‐Manager (
  • Image‐processing application Fiji (
  • Stage micrometer (Edmund Optics, cat. no. 36‐121)
  • MTrackJ plugin (
  • Additional reagents and equipment for preparing agarose ( protocol 3, steps 8 to 12) and cannula cutting tool ( protocol 3, step 1).

Basic Protocol 3: ECIS/Taxis Assay

  • 10 mM cysteine
  • SeaKem GTG Agarose (BioWhittaker Molecular Applications, cat. no. 50070)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Complete RPMI medium (see recipe)
  • Jurkat T cells (ATCC, cat no. T1B‐152)
  • Chemoattractant: Stromal cell–derived factor 1α (SDF‐1α; R&D Systems, cat. no. 350‐NS‐010)
  • 14‐G, 6‐in. blunt‐end cannulae (Fisher Scientific, cat. no. 290‐30)
  • 5/64‐in. drill bit
  • Handheld drill
  • Drill press
  • 1‐in. wide × 2‐in. long × 1/4‐in. thick Plexiglas
  • ECIS Ztheta 8 well array system (Applied Biophysics,‐ecis8z.php)
  • ECIS 8W Chemotaxis Electrode Array (Applied Biophysics,
  • 15‐ml conical polypropylene tubes (e.g., BD Falcon)
  • 0.22‐μm syringe filters
  • 5¾‐in. and 9‐in.Pasteur pipets
  • Vacuum trap
  • Low vacuum source
  • Inverted microscope
  • Computer running Microsoft Excel (optional)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Aksamit, R.R., Backlund, P.S., Jr., and Cantoni, G.L. 1985. Cholera toxin inhibits chemotaxis by a cAMP‐independent mechanism. Proc. Natl. Acad. Sci. U.S.A. 82:7475‐7479.
  Becker, E.L., Kermode, J.C., Naccache, P.H., Yassin, R., Marsh, M.L., Munoz, J.J., and Sha'afi, R.I. 1985. The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin. J. Cell Biol. 100:1641‐1646.
  Bizzarri, C., Pagliei, S., Brandolini, L., Mascagni, P., Caselli, G., Transidico, P., Sozzani, S., and Bertini, R. 2001. Selective inhibition of interleukin‐8‐induced neutrophil chemotaxis by ketoprofen isomers. Biochem. Pharmacol. 61:1429‐1437.
  Boyden, S. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115:453‐466.
  Deery, W.J., Gao, T., Ammann, R., and Gomer, R.H. 2002. A single cell density‐sensing factor stimulates distinct signal transduction pathways through two different receptors. J. Biol. Chem. 277:31972‐31979.
  Frevert, C.W., Wong, V.A., Goodman, R.B., Goodwin, R., and Martin, T.R. 1998. Rapid fluorescence‐based measurement of neutrophil migration in vitro. J. Immunol. Methods 213:41‐52.
  Giaever, I. and Keese, C.R. 1984. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. U.S.A. 81:3761‐3764.
  Hadjout, N., Laevsky, G., Knecht, D.A., and Lynes, M.A. 2001. Automated real‐time measurement of chemotactic cell motility. BioTechniques 31:1130‐1138.
  Hadjout, N., Yin, X., Knecht, D.A., and Lynes, M.A. 2007. Automated real‐time measurements of leukocyte chemotaxis. J. Immunol. Methods 320:70‐80.
  Hauser, A.E., Debes, G.F., Arce, S., Cassese, G., Hamann, A., Radbruch, A., and Manz, R.A. 2002. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J. Immunol. 169:1277‐1282.
  Ip, M., Lomas, D.A., Shaw, J., Burnett, D., and Stockley, R.A. 1990. Effect of non‐steroidal anti‐inflammatory drugs on neutrophil chemotaxis—an in vitro and in vivo study. Br. J. Rheumatol. 29:363‐367.
  Kaslow, H.R. and Burns, D.L. 1992. Pertussis toxin and target eukaryotic cells: Binding, entry, and activation. FASEB J. 6:2684‐2690.
  Kolaczkowska, E. and Kubes, P. 2013. Neutrophil recruitment and function in health and inflammation. Nature Rev. Immunol. 13:159‐175.
  Kowolenko, M., Keese, C.R., Lawrence, D.A., and Giaever, I. 1990. Measurement of macrophage adherence and spreading with weak electric fields. J. Immunol. Methods 127:71‐77.
  Krumholz, W., Abdulle, O., Knecht, J., and Hempelmann, G. 1999. Effects of i.v. anaesthetic agents on the chemotaxis of eosinophils in vitro. Br. J. Anaesth. 83:333‐335.
  Laevsky, G. and Knecht, D.A. 2001. Under‐agarose folate chemotaxis of Dictyostelium discoideum amoebae in permissive and mechanically inhibited conditions. Biotechniques 31:1140‐1142, 1144, 1146‐1149.
  Lauffenburger, D.A., Tranquillo, R.T., and Zigmond, S.H. 1988. Concentration gradients of chemotactic factors in chemotaxis assays. Methods Enzymol. 162:85‐101.
  Mahida, Y.R., Ceska, M., Effenberger, F., Kurlak, L., Lindley, I., and Hawkey, C.J. 1992. Enhanced synthesis of neutrophil‐activating peptide‐1/interleukin‐8 in active ulcerative colitis. Clin. Sci. 82:273‐275.
  McCarthy, J.B. and Furcht, L.T. 1984. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol. 98:1474‐1480.
  Moser, B., Wolf, M., Walz, A., and Loetscher, P. 2004. Chemokines: Multiple levels of leukocyte migration control. Trends Immunol. 25:75‐84.
  Moudgil, G.C., Gordon, J., and Forrest, J.B. 1984. Comparative effects of volatile anaesthetic agents and nitrous oxide on human leucocyte chemotaxis in vitro. Can. Anaesth. Soc. J. 31:631‐637.
  Nelson, R.D., Quie, P.G., and Simmons, R.L. 1975. Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115:1650‐1656.
  Newton‐Nash, D.K., Tonellato, P., Swiersz, M., and Abramoff, P. 1990. Assessment of chemokinetic behavior of inflammatory lung macrophages in a linear under‐agarose assay. J. Leukoc. Biol. 48:297‐305.
  Nickoloff, B.J., Karabin, G.D., Barker, J.N., Griffiths, C.E., Sarma, V., Mitra, R.S., Elder, J.T., Kunkel, S.L., and Dixit, V.M. 1991. Cellular localization of interleukin‐8 and its inducer, tumor necrosis factor‐alpha in psoriasis. Am. J. Pathol. 138:129‐140.
  Oppenheim, J.J. and Yang, D. 2005. Alarmins: Chemotactic activators of immune responses. Curr. Opin. Immunol. 17:359‐365.
  Roussos, E.T., Condeelis, J.S., and Patsialou, A. 2011. Chemotaxis in cancer. Nat. Rev. Cancer 11:573‐587.
  Seitz, M., Dewald, B., Gerber, N., and Baggiolini, M. 1991. Enhanced production of neutrophil‐activating peptide‐1/interleukin‐8 in rheumatoid arthritis. J. Clin. Invest. 87:463‐469.
  Shibayama, H., Tagawa, S., Hattori, H., Inoue, R., Katagiri, S., and Kitani, T. 1995. Laminin and fibronectin promote the chemotaxis of human malignant plasma cell lines. Blood 86:719‐725.
  Yin, X., Knecht, D.A., and Lynes, M.A. 2005. Metallothionein mediates leukocyte chemotaxis. BMC Immunol. 6:21.
PDF or HTML at Wiley Online Library