In Vivo Measurement of Intragastric Pressure with a Rubber Balloon in the Anesthetized Rat

Zoltán S. Zádori1, Klára Gyires1

1 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 21.12
DOI:  10.1002/0471140856.tx2112s57
Online Posting Date:  September, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The protocols described in this unit are designed to measure the intragastric pressure in anesthetized rats by a water‐filled low‐compliance rubber balloon. The balloon is introduced into the stomach either orally (by passing the balloon down the esophagus) or directly via a small incision of the fundus after laparotomy. The effects of both stimulatory (e.g., carbachol) and inhibitory (e.g., oxymetazoline) agents can be evaluated on the gastric tone and phasic contractions. The model allows the evaluation of dose‐response curves and also the time‐course of the effects. Furthermore, by combining centrally or peripherally acting agents the site of action can also be determined. Curr. Protoc. Toxicol. 57:21.12.1‐21.12.11. © 2013 by John Wiley & Sons, Inc.

Keywords: stomach; intragastric pressure; rubber balloon; anesthetized rat

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Measurement of Intragastric Pressure by Introducing the Balloon via the Mouth
  • Alternate Protocol 1: Measurement of Intragastric Pressure by Introducing the Balloon via the Fundus
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Measurement of Intragastric Pressure by Introducing the Balloon via the Mouth

  Materials
  • Distilled water
  • Male Wistar rats (250 to 350 g)
  • Standard rodent food
  • 25% (w/v) urethane (see recipe)
  • 0.9% (w/v) NaCl (physiological saline; see recipe)
  • Test compounds (carbachol, oxymetazoline; see recipe)
  • Latex condom or latex surgical gloves
  • Cotton thread
  • Esophageal catheter (∼15 to 20‐cm long polyethylene tube with beveled end and 1‐mm diameter)
  • Graduated glass pipets (≥30 cm, with 1‐mm scale)
  • Pressure transducer (e.g., Adinstruments)
  • Laboratory stands and clamps (e.g., Coleparmer)
  • Polyethylene tubes (2‐mm diameter)
  • Tube clamps and connectors (e.g., Harvard Apparatus)
  • Bridge amplifier (e.g., Adinstruments, model fe221)
  • A PC‐based data acquisition system (e.g., Adinstruments, powerlab 4/35 with labchart software)
  • Solid‐bottom polypropylene cages (with minimum 800‐cm2 floor area to house the animals in access‐restricted temperature/light‐controlled rooms)
  • Mesh‐bottom rodent cages (to house the animals before experiments)
  • Animal scale (accuracy ± 1 g, e.g., Mettler Toledo)
  • 1‐ and 2‐ml plastic syringes
  • 22‐ and 25‐G needles
  • Heated surgery table for rats (e.g., 2Biological Instruments; http://www.2biol.com)
  • Rectal temperature probe
  • Surgical instruments including:
    • Sharp scissors
    • Two small curved forceps
    • Surgical needles
  • Tracheal cannula (∼2 to 3‐cm long plastic tube with 2‐mm diameter)
  • Venous cannula [∼4 to 5 cm polyethylene tube (PE50) attached to a 22‐G blunt needle] and 1‐ml plastic syringe
  • Stainless steel wire (fitting in the esophageal cannula)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abrahamsson, H. 1973. Vagal relaxation of the stomach induced from the gastric antrum. Acta Physiol. Scand. 89:406‐414.
  Andrews, P.L., Grundy, D., and Scratcherd, T. 1980. Reflex excitation of antral motility induced by gastric distension in the ferret. J. Physiol. 298:79‐84.
  Baird, J.P., Travers, J.B., and Travers, S.P. 2001. Parametric analysis of gastric distension responses in the parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:1568‐1580.
  Bayliss, W.M. and Starling, E.H. 1899. The movements and innervation of the small intestine. J. Physiol. 24:99‐143.
  Blandizzi, C. 2007. Enteric alpha‐2 adrenoceptors: Pathophysiological implications in functional and inflammatory bowel disorders. Neurochem. Int. 51:282‐288.
  Brancati, S.B., Zádori, Z.S., Németh, J., and Gyires, K. 2013. Substance P induces gastric mucosal protection at supraspinal level via increasing the level of endomorphin‐2 in rats. Brain Res. Bull. 91:38‐45.
  Cruz, M.T., Murphy, E.C., Sahibzada, N., Verbalis, J.G., and Gillis, R.A. 2007. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:291‐307.
  Ferreira, M. Jr., Sahibzada, N., Shi, M., Panico, W., Niedringhaus, M., Wasserman, A., Kellar, K.J., Verbalis, J., and Gillis, R.A. 2002. CNS site of action and brainstem circuitry responsible for the intravenous effects of nicotine on gastric tone. J. Neurosci. 22:2764‐2779.
  Fukuda, H., Tsuchida, D., Koda, K., Miyazaki, M., Pappas, T.N., and Takahashi, T. 2005. Impaired gastric motor activity after abdominal surgery in rats. Neurogastroenterol. Motil. 17:245‐250.
  Fülöp, K., Zádori, Z., Rónai, A.Z., and Gyires, K. 2005. Characterisation of alpha2‐adrenoceptor subtypes involved in gastric emptying, gastric motility and gastric mucosal defence. Eur. J. Pharmacol. 528:150‐157.
  Gyires, K., Zádori, Z.S., Török, T., and Mátyus, P. 2009. alpha(2)‐Adrenoceptor subtypes‐mediated physiological, pharmacological actions. Neurochem. Int. 55:447‐453.
  Hoebel, B.G. 1967. Intragastric balloon without gastric surgery for the rat. J. Appl. Physiol. 22:189‐190.
  Iwata, H., Tsuchiya, S., Nakamura, T., and Yano, S. 2007. Morphine leads to contraction of the ileal circular muscle via inhibition of the nitrergic pathway in mice. Eur. J. Pharmacol. 574:66‐70.
  Krowicki, Z.K. and Hornby, P.J. 2000. Substance P in the dorsal motor nucleus of the vagus evokes gastric motor inhibition via neurokinin 1 receptor in rat. J. Pharmacol. Exp. Ther. 293:214‐221.
  Langley, J.N. and Magnus, R. 1905. Some observations of the movements of the intestine before and after degenerative section of the mesenteric nerves. J. Physiol. 33:34‐51.
  Lecci, A., De Giorgio, R., Barthó, L., Sternini, C., Tramontana, M., Corinaldesi, R., Giuliani, S., and Maggi, C.A. 1999. Tachykinin NK(1)receptor‐mediated inhibitory responses in the guinea‐pig small intestine. Neuropeptides 33:91‐97.
  Lefebvre, R.A., Hasrat, J., and Gobert, A. 1992. Influence of NG‐nitro‐L‐arginine methyl ester on vagally induced gastric relaxation in the anaesthetized rat. Br. J. Pharmacol. 105:315‐320.
  Li, Y.Q., Zhu, B., Rong, P.J., Ben, H., and Li, Y.H. 2006. Effective regularity in modulation on gastric motility induced by different acupoint stimulation. World J. Gastroenterol. 12:7642‐7648.
  Min, D.K., Tuor, U.I., and Chelikani, P.K., 2011. Gastric distention induced functional magnetic resonance signal changes in the rodent brain. Neuroscience 179:151‐158.
  Nagata, M. and Osumi, Y., 1993. Central alpha 2‐adrenoceptor‐mediated inhibition of gastric motility in rats. Jpn. J. Pharmacol. 62:329‐330.
  Ozaki, N., Sengupta, J.N., and Gebhart, G.F. 1999. Mechanosensitive properties of gastric vagal afferent fibers in the rat. J. Neurophysiol. 82:2210‐2220.
  Palheta, R.C. Jr., Rola, F.H., Lira, G.H., Gomes, D.A., Carvalho, F.M., Elias, L.L., Antunes‐Rodrigues, J., Oliveira, R.B., and Santos, A.A. 2010. Atrial stretch increases the gastric tonus of anesthetized rats. Life Sci. 86:441‐447.
  Paton, W.D. and Vizi, E.S. 1969. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea‐pig ileum longitudinal muscle strip. Br. J. Pharmacol. 35:10‐28.
  Qualls‐Creekmore, E., Tong, M., and Holmes, G.M. 2010. Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol. Motil. 22:181‐185.
  Reynell, P.C. and Spray, G.H. 1957. The effect of ether and pentobarbitone sodium on gastrointestinal function in the intact rat. Br. J. Pharmacol. 12:104‐106.
  Rose, E.F. 1979. Factors influencing gastric emptying. J. Forensic Sci. 24:200‐206.
  Sakaguchi, T. and Shimojo, E. 1984. Inhibition of gastric motility induced by hepatic portal injections of D‐glucose and its anomers. J. Physiol. 351:573‐581.
  Scheibner, J., Trendelenburg, A.U., Hein, L., Starke, K., and Blandizzi, C., 2002. Alpha 2‐adrenoceptors in the enteric nervous system: A study in alpha 2A‐adrenoceptor‐deficient mice. Br. J. Pharmacol. 135:697‐704.
  Schemann, M., Rohn, M., and Michel, K. 2008. Motor control of the stomach. Eur. Rev. Med. Pharmacol. Sci. 12:41‐51.
  Shi, M., Jones, A.R., Niedringhaus, M.S., Pearson, R.J., Biehl, A.M., Ferreira, M. Jr., Sahibzada, N., Verbalis, J.G., and Gillis, R.A. 2003. Glucose acts in the CNS to regulate gastric motility during hypoglycemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:1192‐1202.
  Tack, J. 2008. Prokinetics and fundic relaxants in upper functional GI disorders. Curr. Opin. Pharmacol. 8:690‐696.
  Takahashi, T., Tsuchida, D., and Pappas, T.N. 2007. Central effects of morphine on GI motility in conscious dogs. Brain Res. 1166:29‐34.
  Takeuchi, K., Niida, H., Ohuchi, T., and Okabe, S. 1994. Influences of urethane anesthesia on indomethacin‐induced gastric mucosal lesions in rats. Relation to blood glucose levels. Dig. Dis. Sci. 39:2536‐2542.
  Takeuchi, K., Miyazawa, T., Tanaka, A., Kato, S., and Kunikata, T. 2002. Pathogenic importance of intestinal hypermotility in NSAID‐induced small intestinal damage in rats. Digestion 66:30‐41.
  Umezawa, T., Guo, S., Jiao, Y., and Hisamitsu, T. 2003. Effect of clonidine on colonic motility in rats. Auton. Neurosci. 107:32‐36.
  Yuasa, H. and Watanabe, J. 1994. Influence of urethane anesthesia and abdominal surgery on gastrointestinal motility in rats. Biol. Pharm. Bull. 17:1309‐1312.
  Zádori, Z.S., Shujaa, N., Fülöp, K., Dunkel, P., and Gyires, K. 2007. Pre‐ and postsynaptic mechanisms in the clonidine‐ and oxymetazoline‐induced inhibition of gastric motility in the rat. Neurochem. Int. 51:297‐305.
  Zhou, S.Y., Lu, Y.X., and Owyang, C. 2008. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 294:1158‐1164.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library