Using Chemotherapeutic Drugs to Trigger Hematopoietic Stem Cell Activation and Determine Hematological Toxicity

Nathan Boles1

1 Neural Stem Cell Institute, Rensselaer, New York
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 22.1
DOI:  10.1002/0471140856.tx2201s47
Online Posting Date:  February, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Hematopoietic stem cells (HSCs) replenish blood cells throughout the lifetime of an animal. Maintaining the HSC pool is of paramount importance to the survival of the organism. Thus, when treating a patient or an animal with chemotherapeutic agents, all care must be taken to ensure that the HSC pool is minimally damaged while simultaneously eradicating the target population. Discussed here is a method to assess the potency of chemotherapeutic drugs on the hematopoietic system, their ability to activate the HSC compartment, and the damage done to the HSC pool. Curr. Protoc. Toxicol. 47:22.1.1‐22.1.6. © 2011 by John Wiley & Sons, Inc.

Keywords: hematopoietic stem cells; activation; chemotherapy; FACS

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Proliferation of Hematopoietic Cells Following Treatment with Chemotherapeutic Agents
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Proliferation of Hematopoietic Cells Following Treatment with Chemotherapeutic Agents

  Materials
  • Adult mice
  • 5‐Fluorouracil (5‐FU; Sigma) or other chemotherapeutic agent
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • DMEM+: Dulbecco's modified Eagle medium (DMEM) with 2% fetal calf serum (FCS) and 10 mM HEPES
  • HBSS+: HBSS ( appendix 2A) with 2% FCS and 10 mM HEPES
  • 1 mg/ml Hoechst 33342 stock solution (200×)
  • Lineage‐PE antibodies (BD Biosciences, 1:100 dilution)
    • Gr‐1‐PE
    • Mac‐1‐PE
    • Ter‐119‐PE
    • CD4‐PE
    • CD8‐PE
    • B220‐PE
  • Additional antibodies (BD Biosciences, 1:100 dilution except as noted)
    • Gr‐1‐APC
    • B220‐APC
    • Sca‐1‐APC
    • FITC‐conjugated mouse anti–human Ki‐67 (1:10)
  • 200 µg/ml propidium iodide
  • BD Cytofix/Cytoperm Plus (BD Biosciences)
  • BD Perm/Wash Buffer (BD Biosciences)
  • 37°C water bath
  • Hemocytometer
  • 40‐µm nylon filters, sterile
  • Flow cytometer and cell sorter with a UV, blue, and red laser
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Becker, A.J., McCulloch, E.A., and Till, J.E. 1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452‐454.
   Boitano, A.E., Wang, J., Romeo, R., Bouchez, L.C., Parker, A.E., Sutton, S.E., Walker, J.R., Flaveny, C.A., Perdew, G.H., Denison, M.S., Schultz, P.G., and Cooke, M.P. 2010. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345‐1348.
   Challen, G.A., Boles, N.C., Lin, K.K., and Goodell, M.A. 2009. Mouse hematopoietic stem cell identification and analysis. Cytometry A 75:14‐24.
   Challen, G.A., Boles, N.C., Chambers, S.M., and Goodell, M.A. 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF‐β1. Cell Stem Cell 6:265‐278.
   Chambers, S.M., Boles, N.C., Lin, K.Y., Tierney, M.P., Bowman, T.V., Bradfute, S.B., Chen, A.J., Merchant, A.A., Sirin, O., Weksberg, D.C., Merchant, M.G., Fisk, C.J., Shaw, C.A., and Goodell, M.A. 2007. Hematopoietic fingerprints: An expression database of stem cells and their progeny. Cell Stem Cell 1:578‐591.
   Domen, J. and Weissman, I.L. 2003. Hematopoietic stem cells and other hematopoietic cells show broad resistance to chemotherapeutic agents in vivo when overexpressing bcl‐2. Exp. Hematol. 31:631‐639.
   Dykstra, B., Kent, D., Bowie, M., McCaffrey, L., Hamilton, M., Lyons, K., Lee, S.J., Brinkman, R., and Eaves, C. 2007. Long‐term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218‐229.
   Feng, C.G., Weksberg, D.C., Taylor, G.A., Sher, A., and Goodell, M.A. 2008. The p47 GTPase Lrg‐47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83‐89.
   Goodell, M.A. 2005. Stem cell identification and sorting using the Hoechst 33342 side population (SP). Curr. Protoc. Cytom. 34:9.18.1‐9.18.11.
   Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183:1797‐1806.
   Lemischka, I.R., Raulet, D.H., and Mulligan, R.C. 1986. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917‐927.
   McCulloch, E.A. and Till, J.E. 1960. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res. 13:115‐125.
   Petriz, J. 2007. Flow cytometry of the side population (SP). Curr. Protoc. Cytom. 39:9.23.1‐9.23.14.
   Randall, T.D. and Weissman, I.L. 1997. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5‐fluorouracil treatment. Blood 89:3596‐3606.
   Spangrude, G.J., Heimfeld, S., and Weissman, I.L. 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241:58‐62.
   Till, J.E. and McCulloch, E.A. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14:213‐22.
   Venezia, T.A., Merchant, A.A., Ramos, C.A., Whitehouse, N.L., Young, A.S., Shaw, C.A., and Goodell, M.A. 2004. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2:e301.
   Weksberg, D.C., Chambers, S.M., Boles, N.C., and Goodell, M.A. 2008. CD150‐ side population cells represent a functionally distinct population of long‐term hematopoietic stem cells. Blood 111:2444‐2451.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library