Measuring Altered Disposition of Xenobiotics in Experimental Models of Liver Disease

Rhiannon N. Hardwick1, Nathan J. Cherrington1

1 Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 23.1
DOI:  10.1002/0471140856.tx2301s52
Online Posting Date:  May, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Understanding the metabolic pathway and excretion mechanisms governing the disposition of a compound is essential to the safe use of pharmaceutical agents. Because the liver is the primary organ responsible for the metabolism and elimination of xenobiotics, chronic liver disease can have a significant effect on the disposition of many xenobiotics due to changes in the expression or function of drug metabolizing enzymes and transporters. Liver disease can result in increased retention of a xenobiotic within the body, causing greater exposure of the individual to a potentially harmful compound, which may lead to toxicity. On the other hand, liver disease may also up‐regulate the elimination processes of a xenobiotic, accelerating its removal from the body. With regard to a pharmaceutical agent, enhanced elimination may result in a decreased pharmacologic effect. Such alterations may necessitate dosage adjustments to achieve the desired therapeutic outcome. Curr. Protoc. Toxicol. 52:23.1.1‐23.1.17. © 2012 by John Wiley & Sons, Inc.

Keywords: nonalcoholic fatty liver disease; drug disposition; nonalcoholic steatohepatitis; steatosis

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Measurement of Xenobiotic Disposition in Rat Plasma and Bile Through Femoral Artery and Vein Cannulations and Common Bile Duct Cannulation
  • Alternate Protocol 1: Measurement of Xenobiotic Disposition in Mouse Plasma Through Carotid Artery and Jugular Vein Cannulations
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Measurement of Xenobiotic Disposition in Rat Plasma and Bile Through Femoral Artery and Vein Cannulations and Common Bile Duct Cannulation

  Materials
  • Sprague‐Dawley rats (1.5 to 2 months old or 200 to 250 g)
  • Methionine‐ and choline‐deficient (MCD) diet (models NASH): Dyets, diet no. 518810, Choline Deficient and Iron Supplemented L‐Amino Acid Defined Diet without L‐Methionine
  • Control diet (serves as control to MCD diet): Dyets, diet no. 518754, Choline Sufficient and Iron Supplemented L‐Amino Acid Defined Diet
  • High fat (HF) diet (models simple steatosis): Dyets, diet no. 112280, High Cholesterol, 18% Butter Diet
  • Isocaloric diet (serves as control to HF diet): Dyets, diet no. 180820, Custom Low Fat Control Diet Isocaloric to diet no. 112280
  • Heparin: 100 USP U/ml (Hospira)
  • Heparinized saline: 10:1 mixture of saline and heparin (will need approximately 100 ml)
  • Urethane
  • Normal saline (NaCl): 0.9% (w/v), sterile‐filtered (will need approximately 250 ml)
  • 10% povidone iodine prep solution
  • Lubricant for rectal probe (a water‐based lubricant such as KY Jelly works well)
  • Ice
  • Test compound
  • PE50 polyethylene tubing: 0.965 mm × 0.58 mm
  • 23‐G needles for insertion in PE50 tubing for femoral cannula
  • 1‐ml syringes (will need a minimum of one for each plasma time point collection)
  • 3‐ml syringes for femoral vein cannula
  • PE10 polyethylene tubing: 0.6 mm × 0.28 mm
  • Silk suture: braided silk size 4/0, 0.17‐mm diameter (e.g., Fine Science Tools, cat. no. FST18020‐40)
  • Small animal electric clippers with size 40 ceramic edge 0.25‐mm blade
  • Small gauze sponges: 8 ply, 2 × 2 in.
  • Rodent temperature monitor and heat pad (e.g., Physitemp Instruments, cat. no. TCAT‐2V) with rectal probe (e.g., RET2 rectal probe for rats, Physitemp Instruments)
  • Tape
  • Small scissors: straight, sharp/blunt edges, 10‐cm length (e.g., Fine Science Tools, cat. no. FST14028‐10)
  • 2 Graefe forceps with slight curve: serrated 0.8‐mm tip width, 10‐cm length, curved (e.g., Fine Science Tools, cat. no. FST11051‐10)
  • Kelly hemostats: serrated, 1.5‐mm tip width, curved, 14‐cm length (e.g., Fine Science Tool, cat. no. FST13019‐14)
  • Halsted‐Mosquito hemostats: serrated, 1.1‐mm tip width, curved, 12.5‐cm length (e.g., Fine Science Tools, cat. no. FST13009‐12)
  • Vannas‐Tübingen spring scissors: straight, 8.5‐cm, 5‐mm cutting edge, 0.1‐mm tip diameter (e.g., Fine Science Tools, cat. no. FST15003‐08)
  • Vessel dilating forceps: angled 10°, 0.2‐mm tip diameter, 11‐cm length (e.g., Fine Science Tools, cat. no. FST00125‐11)
  • Microdissection microscope
  • Toothed forceps: slim, 1 × 2 teeth (e.g., Fine Science Tools, cat. no. FST11023‐12)
  • Large scissors: straight, sharp/blunt edges, 12‐cm length (e.g., Fine Science Tools, cat. no. FST14001‐12)
  • 50‐ml conical tube
  • Cotton‐tipped applicators
  • 1.7‐ml microcentrifuge tubes (will need a minimum of one for each bile time point collection, tubes must be weighed before initiation of experiments)
  • Large gauze sponges: 8 ply, 4 × 4 in.
  • 0.65‐ml microcentrifuge tubes, preheparinized (will need a minimum of two for each plasma time point collection)
  • Additional reagents and equipment for euthanizing the animal (Donovan and Brown, )

Alternate Protocol 1: Measurement of Xenobiotic Disposition in Mouse Plasma Through Carotid Artery and Jugular Vein Cannulations

  • C57/Bl6 mice (5 to 8 weeks old, or 20 to 25 g)
  • Ketamine
  • Xylazine
  • 30‐G needles for insertion in carotid and jugular cannulas
  • Wire for securing retractor hooks: nylon‐coated stainless steel bead‐stringing wire, 0.61 mm (this can be purchased at any craft supply store)
  • Small retractor hook: blunt, 1‐mm wide (e.g., Fine Science Tools, cat. no. FST18200‐09; these come in a pack of 25 and can be re‐used if cleaned well)
  • Large retractor hook: blunt, 2.5‐mm wide (e.g., Fine Science Tools, cat. no. FST18200‐10; these com in a pack of 25 and can be re‐used if cleaned well)
  • Tape
  • Rodent temperature monitor and heat pad (e.g., Physitemp Instruments, cat. no. TCAT‐2V) with rectal probe (e.g., RET3 rectal probe for mice, Physitemp Instruments)
  • 2 Graefe forceps with slight curve: serrated 0.8‐mm tip width, 10‐cm length, curved (e.g., Fine Science Tools, cat. no. FST11051‐10)
  • Graefe forceps with sharp curve: serrated 0.8‐mm tip width, 10‐cm length (e.g., Fine Science Tools, cat. no. FST11052‐10)
  • Forceps for applying microserrefines: serrated, 1.3‐mm tip width, 13‐cm length, curved (e.g., Fine Science Tools, cat. no. FST11009‐13)
  • 3 Microserrefines: 4‐mm jaw length, 0.75‐mm jaw width, 16‐mm total length, 125 g jaw pressure (e.g., Fine Science Tools, cat. no. FST18055‐06)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adams, L.A. and Angulo, P. 2005. Recent concepts in non‐alcoholic fatty liver disease. Diab. Med. 22:1129‐1133.
   Ali, R. and Cusi, K. 2009. New diagnostic and treatment approaches in non‐alcoholic fatty liver disease (NAFLD). Ann. Med. 41:265‐278.
   Angulo, P. 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346:1221‐1231.
   Arsov, T., Larter, C.Z., Nolan, C.J., Petrovsky, N., Goodnow, C.C., Teoh, N.C., Yeh, M.M., and Farrell, G.C. 2006a. Adaptive failure to high‐fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem. Biophys. Res. Comm. 342:1152‐1159.
   Arsov, T., Silva, D.G., O'Bryan, M.K., Sainsbury, A., Lee, N.J., Kennedy, C., Manji, S.S.M., Nelms, K., Liu, C., Vinuesa, C.G., de Kretser, D.M., Goodnow, C.C., and Petrovsky, N. 2006b. Fat Aussie‐A New Alström Syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20:1610‐1622.
   Barr, J., Vázquez‐Chantada, M., Alonso, C., Pérez‐Cormenzana, M., Mayo, R., Galán, A., Caballería, J., Martín‐Duce, A., Tran, A., Wagner, C., Luka, Z., Lu, S.C., Castro, A., Le Marchand‐Brustel, Y., Martínez‐Chantar, M.L., Veyrie, N., Clément, K., Tordjman, J., Gaul, P., and Mato, J.M. 2010. Liquid chromatography‐mass‐spectrometry‐based parallel profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J. Proteome Res. 9:4501‐4512.
   Byrne, C.D., Olufadi, R., Bruce, K.D., Cagampang, F.R., and Ahmed, M.H. 2009. Metabolic disturbances in non‐alcoholic fatty liver disease. Clin. Sci. 116:539‐564.
   Carmiel‐Haggai, M., Cederbaum, A.I., and Neito, N. 2005. A high‐fat diet leads to the progression of non‐alcoholic fatty liver disease in obese rats. FASEB J. 19:136‐138.
   Cheung, O. and Sanyal, A.J. 2009. Recent advances in nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol. 25:230‐237.
   Day, C.P. 2002. Pathogenesis of steatohepatitis. Best Pract. Res. Clin. Gastroenterol. 16:663‐678.
   Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Fan, J.G. 2008. Impact of non‐alcoholic fatty liver disease on accelerated metabolic complications. J. Digest. Dis. 9:63‐67.
   Fan, J.G. and Qiao, L. 2009. Commonly used animal models of non‐alcoholic steatohepatitis. Hepatobiliary Pancreat. Dis. Int. 8:233‐240.
   Fisher, C.D., Lickteig, A.J., Augustine, L.M., Oude Elferink, R.P.J., Besselsen, D.G., Erickson, R.P., and Cherrington, N.J. 2009. Experimental non‐alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats. Eur. J. Pharmacol. 613:119‐127.
   Hanley, M.J., Abernethy, D.R., and Greenblatt, D.J. 2010. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinetics 49:71‐87.
   Jow, J., Choi, S.S., and Diehl, A.M. 2008. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin. Liver Dis. 28:370‐379.
   Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y., Torbenson, M.S., Unalp‐Arida, A., Yeh, M., McCullough, A.J., and Sanyal, A.J. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313‐1321.
   Koteish, A. and Mae Diehl, A. 2002. Animal models of steatohepatitis. Best Pract. Res. Clin. Gastroenterol. 16:679‐690.
   Lall, C.G., Aisen, A.M., Bansal, N., and Sandrasegaran, K. 2008. Nonalcoholic fatty liver disease. Am. J. Roentgenol. 190:993‐1002.
   Larter, C.Z. and Yeh, M.M. 2008. Animal models of NASH: Getting both pathology and metabolic contaxt right. J. Gastroenterol. Hepatol. 23:1635‐1648.
   Larter, C.Z., Yeh, M.M., Van Rooyen, D.M., Teoh, N.C., Brooling, J., Hou, J.Y., Williams, J., Clyne, M., Nolan, C.J., and Farrell, G.C. 2009. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J. Gastroenterol. Hepatol. 24:1658‐1668.
   Lickteig, A.J., Fisher, C.D., Augustine, L.M., Aleksunes, L.M., Besselsen, D.G., Slitt, A.L., Manautou, J.E., and Cherrington, N.J. 2007. Efflux transporter expression and acetaminophen metabolite excretion are altered in rodent models of nonalcoholic fatty liver disease. Drug Metab. Dispos. 35:1970‐1978.
   Malone, M. 2003. Altered drug disposition in obesity and after bariatric surgery. Nutr. Clin. Pract. 18:131‐135.
   Marchesini, G., Bugianesi, E., Forlani, G., Cerrelli, F., Lenzi, M., Manini, R., Natale, S., Vanni, N., Melchionda, N., and Rizzetto, M. 2003. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917‐923.
   Marra, F., Gastaldelli, A., Baroni, G.S., Tell, G., and Tiribelli, C. 2008. Molecular basis and mechanisms of progression of non‐alcoholic steatohepatitis. Trends Mol. Med. 14:72‐81.
   Mattar, S.G., Valcu, L.M., Rabinovitz, M., Demetris, A.J., Krasinskas, A.M., Barinas‐Mitchell, E., Eid, G.M., Ramanathan, R., Taylor, D.S., and Schauer, P.R. 2005. Surgically‐induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann. Surg. 242:610‐620.
   McCullough, A.J. 2006. Pathophysiology of nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 40:S17‐S29.
   Schattenberg, J.M. and Gale, P.R. 2010. Animal models of non‐alcoholic steatohepatitis: Of mice and man. Digestive Dis. 28:247‐254.
   Tilg, H. and Moschen, A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 52:1836‐1846.
   Varela‐Rey, M., Embade, N., Ariz, U., Lu, S.C., Mato, J.M., and Martinez‐Chantar, M.L. 2009. Non‐alcoholic steatohepatitis and animal models: Understanding the human disease. Int. J. Biochem. Cell Biol. 41:969‐976.
   Zahra, F. and Kleiner, D.E. 2011. Update on fatty liver disease and steatohepatitis. Adv. Anatom. Pathol. 18:294‐300.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library