Assessment of Drug Transporter Function Using Fluorescent Cell Imaging

Kristin M. Bircsak1, Christopher J. Gibson1, Robert W. Robey2, Lauren M. Aleksunes3

1 Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 2 Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 3 Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 23.6
DOI:  10.1002/0471140856.tx2306s57
Online Posting Date:  September, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

ATP‐binding cassette (ABC) proteins, including the breast cancer resistance protein (BCRP) and multidrug resistance proteins (MDRs), actively transport structurally diverse chemicals from a number of tissues and are being increasingly cited as mediators of clinically relevant drug‐drug interactions. The potential outcomes of concomitantly administering two drugs that interact at the same transporter include altered disposition and toxicity and/or efficacy of one or both of the drugs. Research demonstrating the role of transporters in clinical pharmacokinetics has shed light on the need for in vitro screening methods that detect drug‐transporter interactions during preclinical development. This unit describes cell‐based procedures for detecting functional inhibitors of BCRP and MDR1 by measuring fluorescent substrate accumulation in suspended cells using an automated cell counter, which offers convenience, sensitivity, and speed in measuring intracellular fluorescence and identifying new inhibitors. An alternative method is provided for making similar measurements using a spectrophotometer with fluorescence detection capabilities. Curr. Protoc. Toxicol. 57:21.12.1‐21.12.15. © 2013 by John Wiley & Sons, Inc.

Keywords: ABC transporter; MDR1; BCRP; ABCB1; ABCG2

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Measurement of Transporter Function in Cells Overexpressing an ABC Transporter Using an Automated Fluorescent Cell Counter
  • Alternate Protocol 1: Measurement of Transporter Function in Cells that Endogenously Express ABC Transporters Using an Automated Fluorescent Cell Counter
  • Alternate Protocol 2: Measurement of Transporter Function in Cells Overexpressing an ABC Transporter Using a 96‐Well Plate Fluorescence Reader
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Measurement of Transporter Function in Cells Overexpressing an ABC Transporter Using an Automated Fluorescent Cell Counter

  Materials
  • Fluorescent substrate, appropriate to the transporter, e.g., Rhodamine 123 (Sigma‐Aldrich) or Hoechst 33342 (Sigma‐Aldrich)
  • Positive control inhibitor, appropriate to the transporter, e.g., PSC833 (Xenotech) or Ko143 (Sigma‐Aldrich)
  • Dimethyl sulfoxide (DMSO)
  • Test inhibitors
  • Complete cell culture medium appropriate for cell line used
  • Cell dissociation medium: 0.25% (w/v) trypsin
  • Confluent cultures of cell lines overexpressing transporters of interest grown in 75‐cm2 cell culture flasks:
    • Laboratory‐generated cell lines transfected (e.g., using Lipofectamine) with plasmids containing ABC efflux transporters and empty vector controls (e.g., OriGene)
    • Commercially available cell lines, e.g., SB MDCKII BCRP and SB MDCKII MDR1, transfected cell lines; SB HL60 MRP1 and SB K562 MRP1 selected cell lines (Solvo Biotechnology)
  • Phosphate‐buffered saline (PBS; appendix 2A): sterilize by autoclaving or passing through a 0.2‐µm filter and chill in a 4°C refrigerator or on ice
  • 15‐ml tubes: sterile, amber‐colored, if available
  • 1.5‐ and 2‐ml microcentrifuge tubes, amber‐colored, if available
  • 2‐ to 25‐ml automatic serological pipettor (e.g., Easypet, Eppendorf)
  • Cellometer Vision automated cell counter and computer software (Nexcelom Bioscience)
  • 96‐well clear, round‐bottom microtiter plates with lids (e.g., Greiner Bio‐One Cellstar)
  • Microtiter plate centrifuge, set to 5°C
  • Biohazard waste container
  • Paper towels
  • 37°C, 5% CO 2 cell culture incubator
  • 100‐ to 1000‐µl eight‐channel automatic pipettor
  • 5‐ to 50‐µl eight‐channel manual pipettor
  • Aluminum foil
  • Cellometer counting chamber slides (Nexcelom Bioscience)
  • Cellometer Vision fluorescence optics modules (Nexcelom Bioscience)
    • VB‐450‐302 (Ex/Em: 375/450 nm for Hoechst 33342)
    • VB‐595‐502 (Ex/Em: 525/595 nm for Rhodamine 123)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Literature Cited

Literature Cited
  Barthomeuf, C., Grassi, J., Demeule, M., Fournier, C., Boivin, D., and Beliveau, R. 2005. Inhibition of P‐glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin. Cancer Chemother. Pharmacol. 56:173‐181.
  de Bruin, M., Miyake, K., Litman, T., Robey, R., and Bates, S.E. 1999. Reversal of resistance by GF120918 in cell lines expressing the ABC half‐transporter, MXR. Cancer Lett. 146:117‐126.
  de Vries, N.A., Zhao, J., Kroon, E., Buckle, T., Beijnen, J.H., and van Tellingen, O. 2007. P‐glycoprotein and breast cancer resistance protein: Two dominant transporters working together in limiting the brain penetration of topotecan. Clin. Cancer Res. 13:6440‐6449.
  Dogan, A.L., Legrand, O., Faussat, A.M., Perrot, J.Y., and Marie, J.P. 2004. Evaluation and comparison of MRP1 activity with three fluorescent dyes and three modulators in leukemic cell lines. Leuk. Res. 28:619‐622.
  Dohse, M., Scharenberg, C., Shukla, S., Robey, R.W., Volkmann, T., Deeken, J.F., Brendel, C., Ambudkar, S.V., Neubauer, A., and Bates, S.E. 2010. Comparison of ATP‐binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab. Dispos. 38:1371‐1380.
  Dorian, P., Strauss, M., Cardella, C., David, T., East, S., and Ogilvie, R. 1988. Digoxin‐cyclosporine interaction: Severe digitalis toxicity after cyclosporine treatment. Clin. Invest. Med. 11:108‐112.
  García‐Escarp, M., Martínez‐Muñoz, V., Sales‐Pardo, I., Barquinero, J., Domingo, J.C., Marin, P., and Petriz, J. 2004. Flow cytometry–based approach to ABCG2 function suggests that the transporter differentially handles the influx and efflux of drugs. Cytometry Part A. 62A:129‐138.
  Gedeon, C., Behravan, J., Koren, G., and Piquette‐Miller, M. 2006. Transport of glyburide by placental ABC transporters: Implications in fetal drug exposure. Placenta 27:1096‐1102.
  Gedeon, C., Anger, G., Piquette‐Miller, M., and Koren, G. 2008. Breast cancer resistance protein: Mediating the trans‐placental transfer of glyburide across the human placenta. Placenta 29:39‐43.
  Giacomini, K.M., Huang, S.M., Tweedie, D.J., Benet, L.Z., Brouwer, K.L.R., Chu, X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K.M., Hoffmaster, K.A., Ishikawa, T., Keppler, D., Kim, R.B., Lee, C.A., Niemi, M., Polli, J.W., Sugiyama, Y., Swaan, P.W., Ware, J.A., Wright, S.H., Yee, S.W., Zamek‐Gliszczynski, M.J., and Zhang, L. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215‐236.
  Gibson, C.J., Hossain, M., Richardson, J.R., and Aleksunes, L.M. 2012. Inflammatory regulation of ABC efflux transporter expression and function in microglia. J. Pharmacol. Exp. Ther. 343:650‐660.
  Gow, J.M., Hodges, L.M., Chinn, L.W., and Kroetz, D.L. 2008. Substrate‐dependent effects of human ABCB1 coding polymorphisms. J. Pharmacol. Exp. Ther. 325:435‐442.
  Hammond, J.R., Johnstone, R.M., and Gros, P. 1989. Enhanced efflux of [3H]vinblastine from chinese hamster ovary cells transfected with a full‐length complementary DNA clone for the MDR1 gene. Cancer Res. 49:3867‐3871.
  Homolya, L., Hollo, M., Muller, M., Mechetner, E.B., and Sarkadi, B. 1996. A new method for a quantitative assessment of P‐glycoprotein‐related multidrug resistance in tumour cells. Br. J. Cancer 73:849‐855.
  Hycamtin Package Insert. 2011. GlaxoSmithKline. Research Triangle Park, North Carolina.
  Ivnitski‐Steele, I., Larson, R.S., Lovato, D.M., Khawaja, H.M., Winter, S.S., Oprea, T.I., Sklar, L.A., and Edwards, B.S. 2008. High‐throughput flow cytometry to detect selective inhibitors of ABCB1, ABCC1, and ABCG2 transporters. Assay Drug Dev. Technol. 6:263‐276.
  Kim, H.P., Bernard, L., Berkowitz, J., Nitta, J., and Hogge, D.E. 2012. Flow cytometry‐based assessment of mitoxantrone efflux from leukemic blasts varies with response to induction chemotherapy in acute myeloid leukemia. Cytometry Part B: Clin. Cytom. 82B:283‐294.
  Kim, M., Turnquist, H., Jackson, J., Sgagias, M., Yan, Y., Gong, M., Dean, M., Sharp, J.G., and Cowan, K. 2002. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 8:22‐28.
  Kimchi‐Sarfaty, C., Gribar, J.J., and Gottesman, M.M. 2002. Functional characterization of coding polymorphisms in the human MDR1 gene using a vaccinia virus expression system. Mol. Pharmacol. 62:1‐6.
  Klaassen, C.D. and Aleksunes, L.M. 2010. Xenobiotic, bile acid, and cholesterol transporters: Function and regulation. Pharmacol. Rev. 62:1‐96.
  Konya, A., Andor, A., Satorhelyi, P., Nemeth, K., and Kurucz, I. 2006. Inhibition of the MDR1 transporter by new phenothiazine derivatives. Biochem. Biophys. Res. Commun. 346:45‐50.
  Matsson, P., Pedersen, J.M., Norinder, U., Bergstrom, C.A., and Artursson, P. 2009. Identification of novel specific and general inhibitors of the three major human ATP‐binding cassette transporters P‐gp, BCRP, and MRP2 among registered drugs. Pharm. Res. 26:1816‐1831.
  Olson, D.P., Taylor, B.J., and Ivy, S.P. 2001. Detection of MRP functional activity: Calcein AM but not BCECF AM as a Multidrug Resistance‐related Protein (MRP1) substrate. Cytometry 46:105‐113.
  Ozvegy‐Laczka, C., Hegedus, T., Varady, G., Ujhelly, O., Schuetz, J.D., Varadi, A., Keri, G., Orfi, L., Nemet, K., and Sarkadi, B. 2004. High‐affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 65:1485‐1495.
  Robey, R.W., Steadman, K., Polgar, O., Morisaki, K., Blayney, M., Mistry, P., and Bates, S.E. 2004. Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res. 64:1242‐1246.
  Robey, R.W., Lin, B., Qiu, J., Chan, L.L.‐Y., and Bates, S.E. 2011. Rapid detection of ABC transporter interaction: Potential utility in pharmacology. J. Pharmacol. Toxicol. Methods 63:217‐222.
  Roy, U., Chakravarty, G., Honer Zu Bentrup, K., and Mondal, D. 2009. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2‐mediated efflux of taxol and saquinavir. Biol. Pharm. Bull. 32:2002‐2009.
  Sandimmune Package Insert. 2012. Novartis Pharmaceutical Corporation. East Hanover, New Jersey.
  Shapiro, A.B. and Ling, V. 1997. Positively cooperative sites for drug transport by P‐glycoprotein with distinct drug specificities. Eur. J. Biochem. 250:130‐137.
  Shen, F., Chu, S., Bence, A.K., Bailey, B., Xue, X., Erickson, P.A., Montrose, M.H., Beck, W.T., and Erickson, L.C. 2008. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther. 324:95‐102.
  Tanigawara, Y., Okamura, N., Hirai, M., Yasuhara, M., Ueda, K., Kioka, N., Komano, T., and Hori, R. 1992. Transport of digoxin by human P‐glycoprotein expressed in a porcine kidney epithelial cell line (LLC‐PK1). J. Pharmacol. Exp. Ther. 263:840‐845.
  van Herwaarden, A.E., Wagenaar, E., Karnekamp, B., Merino, G., Jonker, J.W., and Schinkel, A.H. 2006. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ, and Trp‐P‐1 but also mediates their secretion into breast milk. Carcinogenesis 27:123‐130.
  Vellonen, K.S., Honkakoski, P., and Urtti, A. 2004. Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. Eur. J. Pharm. Sci. 23:181‐188.
  Woodahl, E.L., Yang, Z., Bui, T., Shen, D.D., and Ho, R.J. 2004. Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P‐glycoprotein. J. Pharmacol. Exp. Ther. 310:1199‐1207.
  Wright, J.A., Haslam, I.S., Coleman, T., and Simmons, N.L. 2011. Breast cancer resistance protein BCRP (ABCG2)‐mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco‐2) layers. Eur. J. Pharmacol. 672:70‐76.
  Zhou, L., Schmidt, K., Nelson, F.R., Zelesky, V., Troutman, M.D., and Feng, B. 2009. The effect of breast cancer resistance protein and P‐glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2‐methoxy‐3‐(4‐(2‐(5‐methyl‐2‐phenyloxazol‐4‐yl)ethoxy)phenyl)propanoic acid (PF‐407288) in mice. Drug Metab. Dispos. 37:946‐955.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library