Measuring Mitochondrial Membrane Potential with a Tetraphenylphosphonium‐Selective Electrode

António J. Moreno1, Dario L. Santos2, Sílvia Magalhães‐Novais3, Paulo J. Oliveira3

1 DCV – Department of Life Sciences, Universidade de Coimbra, Coimbra, 2 Centre for the Research & Technology of Agro‐Environmental & Biological Sciences (CITAB), Universidade de Trás‐os‐Montes & Alto Douro (UTAD), Vila Real, 3 CNC – Center for Neuroscience and Cell Biology, UC‐Biotech Building, Biocant Park, Universidade de Coimbra, Cantanhede
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 25.5
DOI:  10.1002/0471140856.tx2505s65
Online Posting Date:  August, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Mitochondrial bioenergetics is based on the generation of the protonmotive force by the electron transport chain. The protonmotive force is used by mitochondria for different critical aspects of its normal function, ranging from calcium accumulation to the synthesis of ATP. The transmembrane electric potential (ΔΨ) is the major component of the protonmotive force and is also the main responsible for ATP synthesis by mitochondrial ATP synthase. Although several methods can be used to measure the ΔΨ, the use of the tetraphenylphosphonium cation (TPP+)‐selective electrode is still a method of election due to its sensitivity. The method is based on the accumulation of TPP+ by energized mitochondria, which develop a negative charge in the matrix due to the ejection of protons. This unit describes how to build a custom‐made TPP+‐selective electrode and how to establish the necessary set‐up to follow ΔΨ fluctuations in isolated mitochondrial fractions. © 2015 by John Wiley & Sons, Inc.

Keywords: mitochondrial membrane potential; tetraphenylphosphonium cation; selective electrode; isolated mitochondria

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of the TPP+‐Selective Electrode
  • Basic Protocol 2: Assembly of the TPP+‐Selective Electrode
  • Basic Protocol 3: Measuring Mitochondrial ΔΨ with the TPP+‐Selective Electrode in Isolated Mitochondrial Fractions
  • Support Protocol 1: Calculating Mitochondrial ΔΨ
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Preparation of the TPP+‐Selective Electrode

  • High‐molecular‐weight polyvinylchloride (PVC; mol. wt. 200,000)
  • Tetrahydrofurane (THF; Merck)
  • Bis(2‐ethylhexyl) sebacate (sebacic acid; Fluka)
  • Sodium‐tetraphenylborate (Aldrich)
  • Potassium‐tetraphenylborate (Fluka)
  • Tetraphenylphosphonium chloride (TPPCl; Fluka)
  • 15‐ml glass vessel using magnetic stirring
  • Fume hood
  • 10‐ml glass tubes
  • Glass pipets
  • Six glass rings, 2‐cm diameter
  • Large beakers
  • 80‐mm PVC tubing (2‐mm diameter)
  • Scalpel
  • Scissors
  • Small syringe with a long needle
  • Ag/AgCl wire soldered to an appropriate pH meter cable
NOTE: It is preferable to use Aldrich, cat. no. T2,540‐2. Tetraphenylboron from other suppliers may not work properly.

Basic Protocol 2: Assembly of the TPP+‐Selective Electrode

  • TPP+‐selective electrode (see protocol 1)
  • Teflon tape
  • Metal clamps
  • Metal rods
  • Aluminum foil
  • Wire Faraday cage
  • pH meter (e.g., Jenway 3520 pH meter or similar)
  • Reference electrode (Ag/AgCl saturated electrode Tacussel, model MI 402 or similar)
  • Paper recorder (Kipp & Zonen, model BD 112)

Basic Protocol 3: Measuring Mitochondrial ΔΨ with the TPP+‐Selective Electrode in Isolated Mitochondrial Fractions

  • Assay medium (see recipe)
  • Glutamate/malate 1 M/0.5 M (pH 7.2), optional (see recipe)
  • TPP+‐selective electrodes (as prepared in Basic Protocols protocol 11 and protocol 22)
  • 10 mM TPPCl (see recipe)
  • Isolated mitochondrial fraction (e.g., liver, heart, brain, kidney, etc.)
  • 1 mM FCCP (see recipe)
  • 0.2 mg/ml valinomycin (see recipe)
  • Deionized water
  • Ethanol
  • Magnetic stirrer
  • pH meter (e.g., JENWAY 3520 pH meter)
  • Suitable recorder (e.g., Kipp & Zonen, BD 112)
  • Temperature‐controlled open incubation chamber
  • Circulating water bath
  • Reference electrode (e.g., Ag/AgCl saturated reference electrode ; Tacussel, model MI 402)
NOTE: All stocks are stored at −20°C. Further chemicals are dependent on the type of assay required. Adenosine diphosphate (ADP) phosphorylation cycles are usually performed with the addition of 100 to 500 nmol ADP (see recipe).
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Alves, M.G., Oliveira, P.J., and Carvalho, R.A. 2009. Mitochondrial preservation in Celsior versus histidine buffer solution during cardiac ischemia and reperfusion. Cardiovasc. Toxicol. 9:185‐193.
  Bernardo, T.C., Cunha‐Oliveira, T., Serafim, T.L., Holy, J., Krasutsky, D., Kolomitsyna, O., Krasutsky, P., Moreno, A.M., and Oliveira, P.J. 2013. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition. Bioorgan. Med. Chem. 21:7239‐7249.
  Brown, G.C. 1999. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411:351‐369.
  Cheng, Q., Lichtstein, D., Russell, P., and Zigler, J.S., Jr. 2000. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens. Invest. Ophth. Vis. Sci. 41:482‐487.
  Cossarizza, A., Ceccarelli, D., and Masini A. 1996. Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp. Cell Res. 222:84‐94.
  Cunha‐Oliveira, T., Silva, L., Silva, A.M., Moreno, A.J., Oliveira, C.R., and Santos, M.S. 2013a. Acute effects of cocaine, morphine and their combination on bioenergetic function and susceptibility to oxidative stress of rat liver mitochondria. Life Sci. 92:1157‐1164.
  Cunha‐Oliveira, T., Silva, L., Silva, A.M., Moreno, A.J., Oliveira, C.R., and Santos, M.S. 2013b. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicol Lett. 219:298‐306.
  Custodio, J.B., Moreno, A.J., and Wallace, K.B. 1998. Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate. Toxicol. Appl. Pharm. 152:10‐17.
  da Silva, E.M., Soares, A.M., and Moreno, A.J. 1998. The use of the mitochondrial transmembrane electric potential as an effective biosensor in ecotoxicological research. Chemosphere 36:2375‐2390.
  Hoek, J.B., Nicholls, D.G., and Williamson, J.R. 1980. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J. Biol. Chem. 255:1458‐1464.
  Jensen, B.D. and Gunter, T.E. 1984. The use of tetraphenylphosphonium (TPP+) to mesure membrane potentials in mitochondria: Membrane binding and respiratory effects. Biophys. J. 45:92.
  Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membrane. Biol. 49:105‐121.
  Labajova, A., Vojtiskova, A., Krivakova, P., Kofranek, J., Drahota, Z., and Houstek, J. 2006. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium‐selective electrode. Anal. Biochem. 353:37‐42.
  Lehninger, A. L. 1964. The Transfer of Energy in Oxidative Phosphorylation. Bull. Soc. Chim. Biol. 46:1555‐1575.
  Levitskii, D.O. and Skulachev, V.P. 1972. Effects of penetrating synthetic ions on the respiration of mitochondria and submitochondrial particles. Mol. Biol. 6:267‐272.
  Lumini‐Oliveira, J., Magalhães, J., Pereira, C.V., Aleixo, I., Oliveira, P.J., and Ascensão, A. 2009. Endurance training improves gastrocnemius mitochondrial function despite increased susceptibility to permeability transition. Mitochondrion 9:454‐462.
  Madeira, V.M. 1975. A rapid and ultrasensitive method to measure Ca++ movements across biological membranes. Biochem. Biophys. Res. Commun. 64:870‐876.
  Mildaziene, V., Baniene, R., Nauciene, Z., Marcinkeviciute, A., Morkuniene, R., Borutaite, V., Kholodenko, B., and Brown, G.C. 1996. Ca2+ stimulates both the respiratory and phosphorylation subsystems in rat heart mitochondria. Biochem. J. 320:329‐334.
  Mota, P., Amaral, S., Martins, L., de Lourdes Pereira, M., Oliveira, P.J., and Ramalho‐Santos, J. 2009. Mitochondrial bioenergetics of testicular cells from the domestic cat (Felis catus)‐a model for endangered species. Reprod. Toxicol. 27:111‐116.
  Muratsugu, M., Kamo, N., Kurihara, K., and Kobatake, Y. 1977. Selective electrode for dibenzyl dimethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim. Biophys. Acta. 464:613‐619.
  Nicholls, D.G. and Ferguson, S. 2014, Bioenergetics, 4th ed. Academic Press, Waltham, Mass. USA.
  Oliveira, P.J., Santos, D.J., and Moreno, A.J. 2000. Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Arch. Biochem. Biophys. 374:279‐285.
  Pereira, G.C., Branco, A.F., Matos, J.A., Pereira, S.L., Parke, D., Perkins, E.L., Serafim, T.L., Sardao, V.A., Santos, M.S., Moreno, A.J., Holy, J., and Oliveira, P.J. 2007. Mitochondrially targeted effects of berberine [Natural Yellow 18, 5,6‐dihydro‐9,10‐dimethoxybenzo(g)‐1,3‐benzodioxolo(5,6‐a) quinolizinium] on K1735‐M2 mouse melanoma cells: Comparison with direct effects on isolated mitochondrial fractions. J. Pharmacol. Exp. Ther. 323:636‐649.
  Perry, S.W., Norman, J.P., Barbieri, J., Brown, E.B., and Gelbard, H.A. 2011. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. BioTechniques 50:98‐115.
  Plasek, J., Vojtiskova, A., and Houstek, J. 2005. Flow‐cytometric monitoring of mitochondrial depolarisation: From fluorescence intensities to millivolts. J. Photoch. Photobio. B. 78:99‐108.
  Reid, R.A., Moyle, J., and Mitchell, P. 1966. Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria. Nature 212:257‐258.
  Rolo, A.P., Oliveira, P.J., Moreno, A.J., and Palmeira, C.M. 2001. Protective effect of carvedilol on chenodeoxycholate induction of the permeability transition pore. Biochem. Pharm. 61:1449‐1454.
  Ross, M.F., Kelso, G.F., Blaikie, F.H., James, A.M., Cocheme, H.M., Filipovska, A., Da Ros, T., Hurd, T.R., Smith, R.A., and Murphy, M.P. 2005. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem. (Moscow) 70:222‐230.
  Rottenberg, H. 1984. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations. J. Membrane. Biol. 81:127‐138.
  Saito, S., Murakami, Y., Miyauchi, S., and Kamo, N. 1992. Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: Correction of probe intracellular binding and mitochondrial accumulation. Biochim. Biophys. Acta. 1111:221‐230.
  Santos, M.S., Santos, D.L., Palmeira, C.M., Seica, R., Moreno, A.J., and Oliveira, C.R. 2001. Brain and liver mitochondria isolated from diabetic Goto‐Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes‐Metab. Res. 17:223‐230.
  Sardao, V.A., Oliveira, P.J., and Moreno, A.J. 2002. Caffeine enhances the calcium‐dependent cardiac mitochondrial permeability transition: Relevance for caffeine toxicity. Toxicol. Appl. Pharm. 179:50‐56.
  Scaduto, R.C., Jr. and Grotyohann, L.W. 1999. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76:469‐477.
  Scheffler, I.E. 2008. Mitochondria. 2nd ed. Wiley‐Liss Publishers, Hoboken, N.J.
  Tedeschi, H. 2005. Old and new data, new issues: The mitochondrial DeltaPsi. Biochim. Biophys. Acta. 1709:195‐202.
  Zand, K., Pham, T., Davila, A., Jr., Wallace, D.C., and Burke, P.J. 2013. Nanofluidic platform for single mitochondria analysis using fluorescence microscopy. Anal. Chem. 85:6018‐6025.
PDF or HTML at Wiley Online Library