In Vivo Determination of Mitochondrial Function Using Luciferase‐Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant‐Induced Dysfunction

Anthony L. Luz1, Cristina Lagido2, Matthew D. Hirschey3, Joel N. Meyer1

1 Nicholas School of the Environment, Duke University, Durham, North Carolina, 2 School of Medical Sciences, Institute of Medical Sciences, Aberdeen, 3 Department of Medicine, Duke University, Durham, North Carolina
Publication Name:  Current Protocols in Toxicology
Unit Number:  Unit 25.8
DOI:  10.1002/cptx.10
Online Posting Date:  August, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant‐induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase‐expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady‐state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short‐term inhibitor exposure indicate toxicant‐induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant‐induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc.

Keywords: Caenorhabditis elegans; fatty acid oxidation; glycolysis; mitochondrial toxicity; PE255; PE327; oxidative phosphorylation

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Luciferase‐Based in Vivo Assessment of Mitochondrial Energy Metabolism in C. elegans
  • Support Protocol 1: Preparing OP50 Seeded K Agar Plates
  • Support Protocol 2: Age‐Synchronizing Nematodes Via Sodium Hypochlorite Treatment
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Luciferase‐Based in Vivo Assessment of Mitochondrial Energy Metabolism in C. elegans

  • OP50‐seeded K agar plates (see protocol 2)
  • Synchronous populations of L1 PE255 nematodes (see protocol 3)
  • K medium (see recipe)
  • Inhibitor stocks (Table 25.8.1 outlines all required inhibitors, as well as storage conditions)
  • Unbuffered EPA H 2O (see recipe)
  • Dimethylsulfoxide (DMSO)
  • 0.1% (v/v) Triton X‐100 (diluted in ddH 2O; store at room temperature indefinitely)
  • Luminescence buffer (see recipe)
  • 70% ethanol
  • Incubator (capable of maintaining temperatures in the range of 15−25°C)
  • Centrifuge (e.g., Beckman Coulter equipped for 15‐ml tubes)
  • Dissecting light microscope
  • Glass microscope slides
  • 25‐ml disposable reagent reservoirs
  • Multichannel pipettor (capable of pipetting 20 to 200 µl)
  • White 96‐well plates without lids
  • Horizontal vortexer (e.g., Eppendorf MixMate PCR 96)
  • Orbital shaker
  • Microplate reader (FLUOstar OPTIMA, BMG Labtech) equipped with luminescence optic, 502‐nm emissions filter, and 485‐nm excitation filter
  • 50‐ml conical centrifuge tubes
  • Additional reagents and equipment for culturing nematodes (Stiernagle, )
Table 5.8.1   MaterialsPreparation of Inhibitors

Inhibitor (target) Stock concentration Working concentration (8×) Final concentration (1×) Incubation period (hr)
Rotenone (ETC complex I) 2 mM dissolved in 100% DMSO (store at −20°C in 30‐µl aliquots)
  • 160 µM dissolved in 8% DMSO
  • To make: Add 24 µl 2 mM rotenone (100% DMSO) to 276 µl unbuffered EPA H 2O
20 µM in 1% DMSO 1
TTFA (ETC complex II)a 100 mM dissolved in 100% DMSO (store at 4°C in 30‐µl aliquots)
  • 8mM dissolved in 8% DMSO
  • To make: Add 24 µl 100 mM TTFA to 276 µl unbuffered EPA H 2O
1 mM in 1% DMSO 1
  • Malonate
  • (ETC complex II) b
120 mM dissolved in 100% unbuffered EPA H 2O (store at 4°C in 1‐ml aliquots) 120 mM dissolved in 100% unbuffered EPA H 2O 15 mM in 100% unbuffered EPA H 2O 1
Antimycin A (ETC complex III) 15 mM dissolved in 100% DMSO (store at −20°C in 30‐µl aliquots)
  • 1.2 mM dissolved in 8% DMSO
  • To make: Add 24 µl 15 mM antimycin A (100% DMSO) to 276 µl unbuffered EPA H 2O
150 mM in 1% DMSO 1
Sodium azide (ETC complex IV) c 2 mM dissolved in 100% unbuffered EPA H 2O (store at 4°C in 1‐ml aliquots) 2 mM dissolved in 100% unbuffered EPA H 2O 250 µM in 100% unbuffered EPA H 2O 1
DCCD (ATP synthase) 2 mM dissolved in 100% DMSO (store at −20°C in 30‐µl aliquots)
  • 160 µM dissolved in 8% DMSO
  • To make: Add 24 µl 2 mM DCCD (100% DMSO) to 276 µl unbuffered EPA H 2O
20 µM in 1% DMSO 1
FCCP (mitochondrial uncoupler) 2.5 mM dissolved in 100% DMSO (store at −20°C in 30‐µl aliquots)
  • 200 µM dissolved in 8% DMSO
  • To make: Add 24 µl 2.5 mM FCCP (100% DMSO) to 276 µl unbuffered EPA H 2O
25 µM in 1% DMSO 1
Perhexiline (fatty acid oxidation) 10 mM dissolved in 100% DMSO (store at 4°C in 30‐µl aliquots)
  • 800 µM dissolved in 8% DMSO
  • To make: Add 24 µl 10 mM perhexiline (100% DMSO) to 276 µl unbuffered EPA H 2O
100 µM in 1% DMSO 1
2‐DG (glycolysis) 400 mM dissolved in unbuffered EPA H 2O (store at 4°C in 30‐µl aliquots) 400 mM dissolved in unbuffered EPA H 2O 50 mM in 100% unbuffered EPA H 2O 4.5

 a500 µM TTFA reduces luminescence approximately 50% in PE255 N2 nematodes (data not shown), while 1000 µM causes an 80% to 99% reduction in PE255 N2 bioluminescence (Fig.  ). Concentrations of ETC inhibitors listed in Table 25.8.1 caused roughly a 40% to 60% reduction in bioluminescence in young adult PE255 glp‐4‐deficient nematodes (see Supplemental Figures 2 to 7 at, and with the exceptions of TTFA and sodium azide, cause similar reductions in both L4 and 8 day old PE255 N2 nematodes.
 bMalonate, a competitive inhibitor of ETC complex II, can be used in place of TTFA at the discretion of the experimenter. Pros and cons of this are discussed in Background Information.
 c250 µM sodium azide has no significant effect on PE255 N2 bioluminescence, while 500 µM azide reduces bioluminescence ∼50%.

Support Protocol 1: Preparing OP50 Seeded K Agar Plates

  • Potassium chloride (KCl),
  • Sodium chloride (NaCl)
  • Bacto‐peptone (e.g., BD Difco)
  • Bacto‐agar (e.g., BD Difco)
  • 1 M calcium chloride (CaCl 2, dissolved in distilled deionized H 2O and autoclaved)
  • 1 M magnesium sulfate (MgSO 4, dissolved in distilled deionized H 2O and autoclaved)
  • 10 mg/ml cholesterol (dissolved in 100% ethanol and filter sterilized)
  • 5 ml 1.25 mg/ml nystatin (dissolved in 100% ethanol)
  • LB broth (see recipe)
  • E. coli OP50 (which can be purchased from the Caenorhabditis Genetics Center, University of Minnesota)
  • Erlenmeyer flask (2 liters or larger)
  • Magnetic stir bar
  • Magnetic stirrer/hot plate
  • Autoclave tape
  • Serological pipet (25 or 50 ml)
  • Petri dishes (100 × 50 mm)
  • Inoculating loop
  • 37°C shaking incubator
  • Repeating pipettor (e.g., Eppendorf) and 10‐ml displacement tips
  • Glass hockey stick spreaders
  • Rotating pedestal (turntable) for spreading bacteria on agar in Petri dish
  • Bunsen burner

Support Protocol 2: Age‐Synchronizing Nematodes Via Sodium Hypochlorite Treatment

  • OP50‐seeded K agar plates (see protocol 2) containing gravid transgenic (PE255) adult nematodes
  • K medium (see recipe)
  • 70% ethanol
  • Sodium hydroxide/bleach solution (see recipe)
  • Complete K medium (see recipe)
  • OP50‐seeded K agar plates (see protocol 2)
  • 15‐ml centrifuge tubes (e.g., Corning Falcon)
  • Centrifuge (e.g., Beckman Coulter equipped for 15‐ml tubes)
  • Glass hockey stick spreader
  • Bunsen burner
  • Orbital shaker
  • 50‐ml cell culture flask
  • Dissecting light microscope
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Backer, J. and Weinstein, I. 1980. Mitochondrial DNA is a major cellular target for a dihydrodiol‐epoxide derivative of benzo [a] pyrene. Science 209:297‐299. doi: 10.1126/science.6770466.
  Baysal, B.E., Ferrell, R.E., Willett‐Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., and Myers, E.N. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848‐851.
  Beal, M.F. 2005. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58:495‐505. doi: 10.1002/ana.20624
  Beanan, M.J. and Strome, S. 1992. Characterization of a germ‐line proliferation mutation in C. elegans. Development 116:755‐766.
  Bess, A.S., Crocker, T.L., Ryde, I.T., and Meyer, J.N. 2012. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res. 40:7916‐7931. doi: 10.1093/nar/gks532.
  Bess, A.S., Leung, M.C., Ryde, I.T., Rooney, J.P., Hinton, D.E., and Meyer, J.N. 2013. Effects of mutations in mitochondrial dynamics‐related genes on the mitochondrial response to ultraviolet C radiation in developing Caenorhabditis elegans. Worm 2(1):e23763. doi: 10.4161/worm.23763.
  Bodhicharla, R., Ryde, I.T., Prasad, G., and Meyer, J.N. 2014. The tobacco‐specific nitrosamine 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) induces mitochondrial and nuclear DNA damage in Caenorhabditis elegans. Environ. Mol. Mutagen. 55:43‐50. doi: 10.1002/em.21815.
  Boyd, W., Smith, M., Co, C., Pirone, J., Rice, J., Shockley, K., and Freedman, J. 2016. Developmental effects of the ToxCast™ Phase I and II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ. Health Perspect. 124:586‐593.
  Braeckman, B.P., Houthoofd, K., and Vanfleteren, J.R. 2009. Intermediary metabolism. WormBook. doi: 10.1895/wormbook.1.146.1 ISBN/ISSN: 1551‐8507. Available at
  Braeckman, B.P., Houthoofd, K., De Vreese, A., and Vanfleteren, J.R. 2002. Assaying metabolic activity in ageing Caenorhabditis elegans. Mech. Ageing Dev. 123:105‐119.
  Brys, K., Castelein, N., Matthijssens, F., Vanfleteren, J.R., and Braeckman, B.P. 2010. Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans. BMC Biol. 8:91. doi: 10.1186/1741‐7007‐8‐91.
  Bugger, H. 2008. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin. Sci. 114:195‐210. doi: 10.1042/CS20070166.
  Chan, D.C. 2012. Fusion and fission: Interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46:265‐287. doi: 10.1146/annurev‐genet‐110410‐132529.
  Duchen, M.R. 2000. Mitochondria and calcium: From cell signalling to cell death. J. Physiol. 529:57‐68. doi: 10.1111/j.1469‐7793.2000.00057.x.
  Dykens, J.A. and Will, Y. 2007. The significance of mitochondrial toxicity testing in drug development. Drug Discov. Today 12:777‐785.
  Guan, M.‐X. 2011. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion 11:237‐245. doi: 10.1016/j.mito.2010.10.006.
  Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., and Sohrmann, M. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231‐237. doi: 10.1038/nature01278.
  Kennedy, J.A., Unger, S.A., and Horowitz, J.D. 1996. Inhibition of carnitine palmitoyltransferase‐1 in rat heart and liver by perhexiline and amiodarone. Biochem. Pharmacol. 52:273‐280. doi: 10.1016/0006‐2952(96)00204‐3.
  Kjekshus, J.K. and Mjøs, O.D. 1972. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. Eur. J. Clin. Invest. 51:1767. doi: 10.1172/JCI106978.
  Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal‐Sanz, M., Verrijzer, C.P., Plasterk, R.H., and Heck, A.J. 2003. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21:927‐931. doi: 10.1038/nbt848.
  Lagido, C., McLaggan, D., and Glover, L.A. 2015. A screenable in vivo assay for mitochondrial modulators using transgenic bioluminescent Caenorhabditis elegans. J. Vis. Exp. 104:e53083. doi: 10.3791/53083.
  Lagido, C., Pettitt, J., Flett, A., and Glover, L.A. 2008. Bridging the phenotypic gap: Real‐time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans. BMC Physiol. 8:7. doi: 10.1186/1472‐6793‐8‐7.
  Lagido, C., Pettitt, J., Porter, A., Paton, G., and Glover, L. 2001. Development and application of bioluminescent Caenorhabditis elegans as multicellular eukaryotic biosensors. FEBS Lett. 493:36‐39. doi: 10.1016/S0014‐5793(01)02271‐2.
  Lagido, C., McLaggan, D., Flett, A., Pettitt, J., and Glover, L.A. 2009. Rapid sublethal toxicity assessment using bioluminescent Caenorhabditis elegans, a novel whole‐animal metabolic biosensor. Toxicol. Sci. 109:88‐95. doi: 10.1093/toxsci/kfp058.
  Leung, M.C., Rooney, J.P., Ryde, I.T., Bernal, A.J., Bess, A.S., Crocker, T.L., Ji, A.Q., and Meyer, J.N. 2013. Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharmacol. Toxicol. 14:9. doi: 10.1186/2050‐6511‐14‐9.
  Lewis, J.A. and Fleming, J.T. 1995. Basic culture methods. Methods Cell Biol. 48:3‐29. doi: 10.1016/S0091‐679X(08)61381‐3.
  Lin, M.T. and Beal, M.F. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787‐795. doi: 10.1038/nature05292.
  Liu, Z. and Butow, R.A. 2006. Mitochondrial retrograde signaling. Annu. Rev. Genet. 40:159‐185. doi: 10.1146/annurev.genet.40.110405.090613.
  Luz, A.L., Rooney, J.P., Kubik, L.L., Gonzalez, C.P., Song, D.H., and Meyer, J.N. 2015a. Mitochondrial morphology and fundamental parameters of the mitochondrial respiratory chain are altered in Caenorhabditis elegans strains deficient in mitochondrial dynamics and homeostasis processes. PloS One 10:e0130940. doi: 10.1371/journal.pone.0130940.
  Luz, A.L., Smith, L.L., Rooney, J.P., and Meyer, J.N. 2015b. Seahorse Xfe24 extracellular flux analyzer‐based analysis of cellular respiration in Caenorhabditis elegans. Curr. Protoc. Toxicol. 66:25.7.1‐25.7.15. doi: 10.1002/0471140856.tx2507s66.
  Luz, A.L., Godebo, T., Bhatt, D.P., Ilkayeva, O.R., Maurer, L.L., Hirschey, M.D., and Meyer, J.N. 2016. Arsenite uncouples mitochondrial respiration and induces a Warburg‐like effect in Caenorhabditis elegans. Toxicol Sci. In Press.
  McBride, H.M., Neuspiel, M., and Wasiak, S. 2006. Mitochondria: More than just a powerhouse. Curr. Biol. 16:R551‐R560. doi: 10.1016/j.cub.2006.06.054.
  McLaggan, D., Amezaga, M.R., Petra, E., Frost, A., Duff, E.I., Rhind, S.M., Fowler, P.A., Glover, L.A., and Lagido, C. 2012. Impact of sublethal levels of environmental pollutants found in sewage sluge on a novel Caenorhabditis elegans model biosensor. PloS one 7:e46503. doi: 10.1371/journal.pone.0046503.
  Meyer, J.N., Leung, M.C., Rooney, J.P., Sendoel, A., Hengartner, M.O., Kisby, G.E., and Bess, A.S. 2013. Mitochondria as a target of environmental toxicants. Toxicol. Sci. 134:1‐17. doi: 10.1093/toxsci/kft102.
  Mjos, O. and Kjekshus, J. 1971. Increased local metabolic rate by free fatty acids in the intact dog heart. Scand. J. Clin. Lab. Res. Investig. 28:389‐393. doi: 10.3109/00365517109095714.
  Olmedo, M., Geibel, M., Artal‐Sanz, M., and Merrow, M. 2015. A high‐throughput method for the analysis of larval developmental phenotypes in Caenorhabditis elegans. Genetics 201:443‐448. doi: 10.1534/genetics.115.179242.
  Poirier, M.C., Gibbons, A.T., Rugeles, M.T., Andre‐Schmutz, I., and Blanche, S. 2015. Fetal consequences of maternal antiretroviral nucleoside reverse transcriptase inhibitor use in human and nonhuman primate pregnancy. Curr. Opin. Pediatr. 27:233‐239. doi: 10.1097/MOP.0000000000000193.
  Ratnappan, R., Amrit, F.R., Chen, S.‐W., Gill, H., Holden, K., Ward, J., Yamamoto, K.R., Olsen, C.P., and Ghazi, A. 2014. Germline signals deploy NHR‐49 to modulate fatty‐acid β‐oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet. 10:e1004829. doi: 10.1371/journal.pgen.1004829.
  Robey, R.B., Weisz, J., Kuemmerle, N., Salzberg, A.C., Berg, A., Brown, D.G., Kubik, L., Palorini, R., Al‐Mulla, F., and Al‐Temaimi, R. 2015. Metabolic reprogramming and dysregulated metabolism: Cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis 36:S203‐S231. doi: 10.1093/carcin/bgv037.
  Rooney, J., Luz, A., Gonzalez‐Hunt, C., Bodhicharla, R., Ryde, I., Anbalagan, C., and Meyer, J. 2014. Effects of 5′‐fluoro‐2‐deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp. Gerontol. 56:69‐76. doi: 10.1016/j.exger.2014.03.021.
  Schulz, T.J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:280‐293. doi: 10.1016/j.cmet.2007.08.011.
  Shukla, K., Ferraris, D.V., Thomas, A.G., Stathis, M., Duvall, B., Delahanty, G., Alt, J., Rais, R., Rojas, C., and Gao, P. 2012. Design, synthesis, and pharmacological evaluation of bis‐2‐(5‐phenylacetamido‐1, 2, 4‐thiadiazol‐2‐yl) ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J. Med. Chem. 55:10551‐10563. doi: 10.1021/jm301191p.
  Stanley, W.C., Lopaschuk, G.D., Hall, J.L., and McCormack, J.G. 1997. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Cardiovasc. Res. 33:243‐257. doi: 10.1016/S0008‐6363(96)00245‐3.
  Stiernagle, T. 1999. Maintenance of C. elegans. Available at
  Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., and Loeffler, M. 1999. Molecular characterization of mitochondrial apoptosis‐inducing factor. Nature 397:441‐446. doi: 10.1038/17135.
  Tanner, C.M., Kamel, F., Ross, G., Hoppin, J.A., Goldman, S.M., Korell, M., Marras, C., Bhudhikanok, G.S., Kasten, M., and Chade, A.R. 2011. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119:866‐872. doi: 10.1289/ehp.1002839.
  Taylor, C.M., Wang, Q., Rosa, B.A., Huang, S., Powell, K., Schedl, T., Pearce, E.J., Abubucker, S., and Mitreva, M. 2013. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog. 9:e1003505. doi: 10.1371/journal.ppat.1003505.
  Thompson, O., Edgley, M., Strasbourger, P., Flibotte, S., Ewing, B., Adair, R., Au, V., Chaudhry, I., Fernando, L., and Hutter, H. 2013. The million mutation project: A new approach to genetics in Caenorhabditis elegans. Genome Res. 23:1749‐1762. doi: 10.1101/gr.157651.113.
  Thorn, M. 1953. Inhibition by malonate of succinic dehydrogenase in heart‐muscle preparations. Biochem. J. 54:540. doi: 10.1042/bj0540540.
  Tsang, W.Y. and Lemire, B.D. 2003. The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim. Biophys. Acta (BBA) 1638:91‐105. doi: 10.1016/S0925‐4439(03)00079‐6.
  Wallace, D.C. 2012. Mitochondria and cancer. Nat. Rev. Cancer 12:685‐698. doi: 10.1038/nrc3365.
  Weber, C.I. 1991. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.
  Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., Kos, I., Batinic‐Haberle, I., Jones, S., and Riggins, G.J. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765‐773. doi: 10.1056/NEJMoa0808710.
  Zhao, F., Malm, S.W., Hinchman, A.N., Li, H., Beeks, C.G., and Klimecki, W.T. 2014. Arsenite‐induced pseudo‐hypoxia results in loss of anchorage‐dependent growth in BEAS‐2B pulmonary epithelial cells. PloS One 9:e114549. doi: 10.1371/journal.pone.0114549.
  Zheng, S.‐Q., Ding, A.‐J., Li, G.‐P., Wu, G.‐S., and Luo, H.‐R. 2013. Drug absorption efficiency in Caenorhabditis elegans delivered by different methods. PloS One 8:e56877. doi: 10.1371/journal.pone.0056877.
  Zubovych, I.O., Straud, S., and Roth, M.G. 2010. Mitochondrial dysfunction confers resistance to multiple drugs in Caenorhabditis elegans. Mol. Biol. Cell 21:956‐969. doi: 10.1091/mbc.E09‐08‐0673.
PDF or HTML at Wiley Online Library

Supplementary Material